
"'"

AD-A019 334

A KNOWLEDGEABLE, LANGUAGE-INDEPENDENT SYSTEM FOR
PROGRAM CONSTRUCTION AND MODIFICATION

Martin D. Yonke

University of Southern California

Prepared for:

Defense Advanced Research Projects Agency

October 1975

DISTRIBUTED BY:

urn
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

™fc-'— - -- - --•——■—t—'———— I ■llll II - - ■ ■ — - - ■

mm
WM

w ■ '■•ll wiim'^—**m*m

021102 ARPA ORDER NO. 2223

ISI/RR-75-42
Oilohir W"*

Martin D. Yonke

A Knowledgeable, Language-Independent System

for Program Construction and Modification

D D C

llaproduc«d by

NATIONAL TECHNICAL
INFORMATION SERVICE

US D«p«rtm«nt o(Cummerc»
SpnngMd, VA. 32151

INFORMATION SCIENCES INSTITUTE

i siviRsny oh \oi i urns CALIFORNIA IMJ 4676 Admiralty Va)/Mar/na del Re)/California t)02()l

(215) 822-1 it >

1 m ■""" 'm**mifmmmm^mm mmmm*^——

UNCLASSIFIED
SCCUWITV CL»»»iriC»TION Or THI» l»*oe fWhwi 0»< BnlMvO

P REPORT DOCUMENTATION PAGE READ IH8TRUCTIOH8
BEFORE COMPLETINC FORM

1 MtPOAT NUMiCM

ISI/RR-75-42
2. OOVT ACCESSION NO. 1. RCCIRIENT'» CATALOG NUMBER

« TITLE fand Ji/b»((/«)

A Knowledgeable, Language-Independent System
for Program Construction and Modification

I. TYI»E Of RERORT A PERIOD COVERED

Research Report

• • RCRrONMINO ONO. REPORT NUMMR

7 AuTMOHf«;

Martin D. Yonke

1. CONTRACT OR GRANT NUMBER, ■

DAHC 15 72 C 0308

• PERFORMING ORGANIZATION NAME AND ADDRESS
USC/lnformation Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90291

10 PROGRAM ELEMENT. PROJECT. TASK
AREA A WORK UNIT NUMBERS

ARPA Order ' 2223
Program Code 3D30&3P10

tl. CONTROLLING OFFICE NAME AND ADDRESS

Defense Advanced Research Projects Agency
1400 Wilson Blvd., Arlington, VA 22209

12. REPORT DAT!

October 1975
IS NUrfBEROr PAGES

68
14 MONITORING AGENCY NAME » AOORESV" dlllmrmtl Irom Conttolhnt Ollle») IS. SECURITY CLASS, (ol thl» roporl)

Unclassified
IS«. DECLASSIFICATION/DOWNGRADING

SCHEDULE

1« DISTRIBUTION STATEMENT (ol Ihlt Rtporl)

This document is approved for public release and sale; distribution unlimited

17. DISTRIBUTION STATEMENT (el lh» abttimct tnfnd In Block 20, II dlllnmnl horn Htport)

It. SUP*LEMENTA*V NOTES

<• KEY WORDS rCofiKnu* en ttvm-t »Id» II n»c»»»mr And ld»nillr by block namb»r)

Interactive editing, language-independent, structure-oriented editing, K,
programming environments. Uf

20. ABSTRACT (Conllnu» an r»vr»» »Id» II n»c»»»mr mtd Idoniltr br block itumbt)

(OVER)

I

9f

DO ,: 'Vn 1473 EDITION OP < NOV «S It OBSOLETE
S/N 0102-014-6601 i UNCLASSIFIED

ttCURlTV CLML^riCATlON OP TMIt PAOt (Whm, OMm Bmfn*)

._____^__(^MRPlMMkbdMiat

 I

UNCLASSIFIED
ticuwiTv CL*—inoTiew or TWH ^»otnwxw Daw >nw<

20. ABSTRACT

Th« n«ed of a language-md-ipandent programming tnvironment with knowledgeable
faeilitlM it explicated. Then the design of a language-independent system for "intelligent"
creation and modification of programs is presented as an example of such a facility. This
«yatem, called the Program Constructor and Modifier, is a two-stage process. In the first stage,
an "expert" creaies a description of a programming language in a high-level formalism. This
description is used in conjunction with the underlying model of programming languages to drive
the second stage, in which the general user ceates and modifies programs written in the
particular programming language. This model will guarantee that throughout the interaction the
program is syntactically error-free and - as far as possible without executing the program —
will guarantee certain semantic consistencies. All methods associated with this model are
oriented towards error prevention whik still allowing the user "free-form" program input.
These methods will also automatically correct certain classes of errors such as misspelled words
and omitted terminal symbols of certain types and will interact with the user to gain information
when there is insufficient knowledge for automatic correction.

This is part of a series of reports describing :SI research directed toward reducing
significantly the cost of military software while improving its application and upgrading the
general quality of software. This report covers a significant portion of the author's University
of Utah doctoral dissertation, completed at ISI.

UNCLASSIFIED
/ SfCuevTY CLAttlFICATION OF THIS P^CZCWht, CM* Knlmnö)

- - - - -

^^m^^m i **^mmmmw **<™*am^fmi^m

ARPA ORDER NO. 2i2i

IS!/RR 71-42
Oclober liP'>

Martin 0 Yonke

A Knowledgeable, Language-Independent System

for Program Construction and Modification

UNIVERSHY OF SOllHERN CALIFORNIA £BJ
INFORMATION SCIENCES INSTITUTE

467f> Admiralty Wky/Marina del Rey/California 90291

(213)8221511

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO DAHC15 72 C 0308 ARPA ORDER

NO 2223 PROGRAM CODE NO 3D30 AND 3P10

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR S AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE

OFFICIAL OPINION OR POLICY OF ARPA THE U S GOVERNMENT OR ANY OTHER PERSON OR AGENCY CONNECTED WITH THEM

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE DISTRIBUTION IS UNLIMITED

l

II

■-- — -

Wü»

1

CONTESTS

Abstract

Introduction /
1.1 Programming Environments
1.2 Program Construction 3
1.3 Example Session 5
1.4 System Overview 12

Associated Research 17
2.1 Language Editors 17
2.2 Program Presentation Facilities
2.3 Error-Correcting Parsers 19

19

The Formalism For Language Definition
3.1 The Metaconstructs 21
3.2 Why Not BNF' 2,1

21

The Structure For Holding Programs
4.1 The Parsed Structure 27
4.2 Ar^eos Nodes 29

27

5. The System Activities U
5.1 Positional Functions 32
5.2 Woiification Functions 3i
5.3 Presentation Functions 44
5.4 The Parsing Mechanism i7
5.5 The Implementation .1/

Summary Ano Conclusions SJ
6.1 Environments U
6.2 Program Construction and Modification:
6.3 Conclusions 57
6.4 Future Research g§

A Summary S3

References 61

iii

^ ^—■

/IHSTKnCT

The need of a language-independent programming environment with knowledgeable
facilities is explicated. Then the design of a language-independent system for "intelligent"
crist.on end modification of programs is presented as an example of such a facility. This
system, called the Progr m Constructor and Modifier, is a two-stage process. !n »he first stage,
an "expert" creates a description of a programming language in a high-level formalism. This
description is used in conjunct,on with the underlying model of programming languages to drive
the second stage, in which the general user creates and modifies programs written in the
particular programming language. This model will guarantee that throughout the interaction the
program is syntactically error-free and - as far as possible without executing the program —
will guarantee certain semantic consistencies. All methods associated with this mode! are
oriented towards error prevention while still allowing tho user "free-form" program input.
These methods will also automatically correct certain classes of errors such as misspelled words
and omitted terminal symbols of certain types and will interact with the user to gain information
when there is insufficient knowledge for automatic correction.

This is part of a series of reports describing ISI research directed toward reducing
significantly the cost of military software while improving its application and upgrading the
general quality of software. This report covers a significant portion of the author's University
of Utah doctoral dissertation, completed at ISI.

 —

——, •-«*

CHAPTER 1

fNTfiOIHCTION

I.I PROCR/IMMINC KNVI RON MEN IS

With few exceptions, the many available programming language designs have not encouraged
the development of helpful systems to maKe those languages more usable. Concern for the
language's real users and the environment in which they must operate has been notably
lacking. In fact, the user's environment has not greatly improved even with interactive
computing facilities. The increasing complexity of programming tasks makes this neglect
critical. Ben Wegbreit stated that his first citerion for "advanced computing applications . . .
[must] be a complete prnßrnmminff %y»irm -- a language plus a comfortable environment for
the prcgrammer."[Weßbreit 73 : p.l] When speci'ically speaking on his requirements for
advanced work of natural language processing, Terry Winograd also desired a cohesive
programming environment [Winograd 75]. And again, in a paper describing requirements for
advanced list | »-ocessing, Daniel Bobrow stressed "the idea of a programming »yxtrm rather
than lnuffun/rr, since the programmer does not just express his algorithm, but must enter his
program, test it, find bugs, modify it, etc."[Bobrow 72 : p. 2]

What do they mean by "programming environment"? It certainly must be more than on-line
computing, which is already available. What is wrong with our current "advanced" facilities to
make com'ortable environments a major factor in future computing efforts? The problem is
thaf most facilities are not only language-independent but also language-ignorani! Wc find
editors which are only text editors with no built-in knowledge of programming languages. We
find debuggers whose only knowledge is that of each language's common denominator — the
machine language. We fino no file system based on a programming effort written in some
programming langu-ge. There are some exceptions where systems do contain some of the
above features; the most notable is INTERLISP [Teitelman 74], which provides a very helpful
environment for the programming language LISP.

But for the most part 'he programmer, or group of programmers, must do s great deal more to
develop a new program than simply concentrate on the semantics of the programming problem.
To quote Warren Teitelman in his introduction to a paper on the predecessor to INTERLISP:

In normal usage, the word "environment" refers to the "aggregate of
social and cultural conditions that influence the life of an individual."
The programmer's environment influence^ to a lart;e extent
determines, what sort of problems he can (and will want to) tackle,
how far he can go, jnd how '«t. If the environment is "co-
operative" and "helpful" ~ the anthropomorphism is deliberate —
then the programmer can be more ambitious and productive. If not,

INTRODUCriON

he will spend most of his time and energy "fighting" the system,
which at tin.c. seems bent on frustrating his best efforts
[Teitelman 69 : p. 1]

For example, one of the most irritating events in a programmer's activities ,5 rece.ving some
cryptic error nessage during program compilation. F.rst. he mu'.t retreat to the text editor
used to create the program, read in h.s file, edit it. write if out. start up the language
processor again, and have it process h.s file (with the possibility of receiving another error
message farther on). Second, while he worries about the semantics of his program, a syntax
error or a semantic error detected by the compiler seems secondary to h.s real goal .e
seemg ,f the program operates as intended. In fact, he knows that any other programmer
lam.l.ar w.th the programming lanoLage but unf.mihar with the part.tular program could
usually correct any of these errors by lookmg at the program and the error message.

A good programming environment would alleviate much of the overhead encountered above
possibly aufom.t.cally correct the error, and at a minimum prov.de ■ more agreeable
atmosphere for .he programmmg effort. A programmmg env.ro.-.ment cons.sfs of a var.ety of
tools and a system for alternat.ng among them for different phases of program developmer»
A good programming environment has "intelligent" tools and an "intelligent" system for
manipulating these tools. In this cc.text, "intelligence" means knowledge of the task
knowledge of what it is meant to manipulate, as well as application of this knowledoe to aid
the user m h.s task. The more knowledge applied, the more the tool can release the user to
Ngher conceptual levels. In general, th.s appl.ed knowledge produces the follow.ng benef.ts:

• Better commun.cat.on and presentation of the information being manipulated.

• Better guidance provided by the tool, preventing errors and »he ability of use by
a less knowledgeable user.

• Better error detection and correction.

• More automated tool activities previously left to the user.

H.stor.cally there have been two classes of knowledge in programmmg languages: syntactic
and semant.c. The former has been used only for creat.ng parsers (of course, certa.n semantic
Knowledge .s also used m th.s task). The latter has been used in different ,orms of program
execution. Tools currently available do not make the best use of the knowledge available.

Two good ind.cat.ons that a tool is ut.l.zmo its knowledge are: (1) it operates correctly and
oas.ly and (2) it helps the user in error prevention and correction (possibly automatically;
parsers have recently been dcvclooed which automat.cally correc» trrO'« ([Leinius 701
[Levy 71]. [Peterson 72]. and [Johns 74]). Also, studies in correction of the semant.cs of
programs are emerging ([Su.sman 73]. [Goldstein 74]. and [W.lczvnski 75]). In the future we
may expect new tools wh.ch apply certain knowledge for a different purpose (e.p.. propram
venf.cat.on [Deut ,h 73]. [Good, et al. 75]. [von Henke, et «I. 75]. [Suzuki 75] and symbol.c
execution [Kmg 75]. [Hew.tt. ef al. 75]). The ult.mate prcSramming environment would not be
static, but would be an ever-expanding system incorporating new tools as they are developed.

As previously mentioned, INTERLISP is a good programming environment. It also follows the

.. ■ .. —i

■ —

INTRODUCTION

«bove principle: new tools and improvements to existing ones are continuously being added.
Unfortunately, this type of effort is very expensive, and is ihus not feasible for every present
and future programming language. Since there seem to be good arguments against the
appearance o* a universal programming language, research on tools for programming
environments must approach the problem from another direction. This direction I would like to
call LIBNI, an acronym for Language-Independent But Not Ignorant». A LIBNI tool is a tool
which knows its task for programming languages n general (or for a class of programming
languages), accepts specific information about a speci'ic programming language, and can then
perform its task for that programming language.

Of course, to accomplish this, it is necessary to be able to abstract the task beyond the
boundaries of one particular language. This generalization must contain forms Of error
protection and recovery for that particular task. Compiler-compilers, which are by definition
language-independent, historically have not been widely accepted, primarily because of their
poor error facilities. They produced a product that operated well on a correct program, but
very badly on an incorrect one. There are two possible reasons for this: (1) their abstraction
and its associated formalism would not tolerate errors and (2) even if they did, the underlying
system did not utilize this tolerance well. In the case of compiler-compilers, this occurred
because of the nonexistent abstraction of error recovery, which can be found in some
compilers. In g?neral, no language-independeni facility can be successful if it does not include
error prevention, detection, and means c? correction. This is the essence of the LIBNI
approach. Of course, any LIBNI fool must also incorporate good man-machine interfacing.

1.2 PROGRAM CONSTHUCTION

Computer science gave us Algol 60: it also gave us the prospect of
time sharing. But when we sit down at a console to write an Algol
program, it is software engineering which determines how easy it is
to achieve this end or alternative!/, the frustrations thnt we ha 'e to
go through. [Morton 73 : pp. 4-5]

After extensive investigation in LIBNI programming environments as a whole, the author
selected the specialized area of program construction and modification. There are several
reasons for this.

• This area is the most neglected and historically unrecognized as a problem crea in
computer science. But Edward Youngs, in a study on human errors in
programming [Youngs 74], used two groups: (1) beginning programmers enrolled
in their first programming course and (2) professionals, i.e., those who had been
employed at least once as a full-time programmer. For the most part, both
groups programmed the same tasks and used several languages: ALGOL, BASIC,
COBOL, and PL/1. He categorized their errors as syntactic, logical, semantically
inconsistent (e.g., undefined identifier), and clerical (e.g., a typing error). The
focus in his study was the types of programming errors, not the number of
errors. His statistics are relative to each group; therefore, although the

• Pronounced lib-nee.

«Ml

—• II ll"l ^-^

INTRODUCTION

professionals made (ewer errors, this is not reflected in tne statistics for their
group.* For beginners, only 35 per cent of the errors were logical errors (the
program hug, where tho program runs but gives incorrect results). Thus 65 per
cent were typing, syntax, and semantic conflict errors, almost all of which were
caught in several patSM through the appropriate compiler. The professional
programmers improved by only M per cent. That is. approximately half of the
errors made by professionals were caught by the compilers. Thus, the task of
correct program construction consumes a large portion of the programming
experience. s

• Althou-h designed as a part of a total programming environment, this facility is
capable of being used alone. That is, il could greatly improve the phase of
program construction and modification by replacing the normal text editor now
being used to construct progr-rns in the average interactive "general-purpose"
computing environment.

• Unlike many other facilities, it is a component of a programming environment that
with current knowledge, could be designed in a language-independent but not
ignorant manner. That is, the knowledge needed for program construction and
modification can currently be abstracted.

• The errors which such a facility could prevent are irritating and unnecessary
because (1) they have nofhmg to do with the "logical" problem being attacked and
(Z) they usually do not appear until later in the pro^ammmg process.

Therefore the goal was to carefully desigr. an integrated LIBNI facility for program "ed.ting "
t should facilitate program construction by maintaining correct syntax and certain semantic

chn5lM T165. '■e; err0r Prevcn,,0n) wh,le ^ll a"0*'"S IHe user "free-form" program input. It
should be able to present program structure in several forms; it should also be able to
provide information concerning the use of symbols such as where and when they aro defined

mro. US| d M ^ Sh0Uld ^ Hm,elhSenlly" by giving warnings about possible
inconsistencies in the use of symbols and by trying to correct simple input errors.

To accomplish this in a LIBNI manner, the facility needs a description of a particular
programming language's syntax and some of its semantics related to symbols. It needs an
internal representation of this information for particular programs. And it must tailor its
operations based on this language description. That is, it needs three items: a language
description, a representation for holding programs, and "intelligent" and adaptable operations
tor program manipulation.

IHüSLÜT! PieC»e! are 'nt*"ela,ed. '» ™ necessary to design the three items together,
-mplement a prototype to test specific parts, review the results, and then revise the design
wnen necessary. ■

This design is intended to be a major part of a total environment for program development in

■nothe? S*V*n Pe' Cent 0f *" err0rS '" b0th 8r0UpS Were n0t classified for 0ne ''••son or

___. ■ttMMMM^ri

■iv»<> <• ^n^p^HH^n ■wwimpHppi

INTRODUCTION

the future. This system, called the Program Constructor and Modifier (abbreviated PCM), is a
two-stage process. In the first stage, an "expert" creates a formal description of a
programming language. This description is used in conjunction with an underlying model of
programming iarguages to drive the second stage, in which the general user creates and
modifies programs written in the particular programming language.

The PCM is important because it is the first step in creating language-independent
programming environments. Not only will it be a part of the overall system, but it is one of
the few parts which is also useful by itself. The PCM can be used as a separate facility,
replacing the standard language-ignorant text editors used by most of today's programmers.»

IJ EXAMPLE SESSION

Before the formalism and the methods for using it in creating and modifying program
language structures are described, we present a scenario of an editing session. This example
is not meant to give a full account of all the possible operations or modes, but only to give tht
reader the flavor of some tasks which can be performed and to show some of the correction
facilities. This scenario is taken directly from a currently running implementation of the
design.*« An exprri has previously input to the PCM the definition of PASCAL®»® written in
the PCM formalism with the following change made to facilitate interactive development of
PASCAL programs. A PASCAL piogram contains global definitions, including function and
procedure definitions, followed by the main program block. In this global definition phase each
function and procedure definition is a separate global entity, and no ordering is implied. Also,
during the session, while a reference to an undefined global entity may be made, it must be
resolved by the end of the session. For example, as part of a definition of a procedure, a
reference might be made to function not yet defined. This is permissible, but the function
must be defined when the user declares he is finished. The liberty of this session definition
has been taken because this is a system for program creation anc1 modification, not "batch-
compilation and execution.

This example will start in the middle of a user session. The user is developing a set of
functions and procedures to convert assignment statements from irfix to postfix notation for a
simple programming language. This example was chosen for its several (but relatively short)
function and procedure definitions; these make the example session short, but interesting. The
reader is asked to extrapolate what he reads into more complex task domains. Although it is
not necessary for the reader to understand the algorithm (since we are dealing with program

• The research presented here was initially inspired by the author's use of the
INTERLISP system, especially the editor. Written by Warren Teitelman, the editor is a structural
editor which manipulates list structures.

•• A discussion jf the prototype implementation can be found in Section 5.5.

•®® PASCAL is an ALGOL-like language, but it does not have locally scoped variables
except through the procedure and function locals. For a definition of PASCAL see K. Jensen
and N. Wirth, Paxr.al — U*rr Manual and Report, Lecture Notes in Computer Science, Vol.
XVIII, ed. by G. Goos and J. Hartmanis (Berlin: Springer-Verlag, 1974).

 f ^IWMV^HJKMIi III '—"

INTRODUCTION

structure and syntax, not semantics), a short description follows (a more complete description
can be found m A.I. Forsythe, et •!., Computer Science: A Fir*i Course (New York: John Wiley
« Sons, 1969), pp. 410-417). As each lexical unit is scanned, it is associated with a number
from one to six. Identifiers are associated with the value ;ix and are output immediately All
others (i.e., operators) ere assigned a value based on the.r precedence. A stack is used as
temporary storage while the algorithm decides the appropriate order and time to output the
operators. r

!n the example session, the user's prompting symbol for input will be "<-•'. Program segments
input by the user will be enclosed by a matching pair of double quotes. These characters
were supplied by the expert along with the language description in the PCM formalism To
avoid any confusion by a potential future user, the sequence of characters for the prompting
symbo and e program segmen» delimiter should not appear as a m5aningful sequence of
characters in Ihe programmin3 language described by the expert. A novice PCM user might
get cor fused as to the current shte of the system if the characters typed could either be
part of programming language or a prompt from the system for more input. For clarity all
user input will be tvped in this character font and all output from t e PCM will be in a bold-
face character font. „!so, user input appears only on lines with tl 3 prompting symbol "<-H

immediately adjacent single-spaced lines following the prompting symbol line, and after a
question has been typed by the PCM and is awaiting the programmer's answer. Between and
during interactions, a continuing discussion of the abilities of the PCM WMI .Vequently appear
We will now join the user.

<- STATUS?

defined globals
procedures INFIXTOPOSTFIX, OUTPUT
functions ENDOfSTMT, POP, STACKEMPTY, TOS
char array STACl'
integer STACKINDEX

undefined globals
procedure PUSH
function LEVEL

The user has just asked for 3 report of all globals. Notice first that the PCM has
several separate definitions for the user to manipulate. The user has already input
them and they are syntactically correct. It also knows the tyoes of each global. One
would usually expect to find this in a system for interactive program execution, but not
in an editing system. But this is an environment for program construction, not a simple
text editor. The user Is also informed that he has not defined LEVEL and PUSH He now
proceeds to define PUSH.

<- DEFINE "PROCEDURE PUSH (ITEM.-CHAR); BEGIN
STACKINDEX:-STACKINDEX+lj STACK[STACKINDEX] :-ITEM
END;"

procedure PUSH defined

. . .. IMdMMUitMMaMIMI

r ^^«■»■"■"i^i"«11. '"1 imm**mmmmmmm*'mmmm^m—**~*mmmmmmmmmiß,mmmijm

INTRODUCTION

<- PRINT

procedure PUSH (ITEM : CHAR) ;
begin

STACKINDEX :- STACKI.MDEX ♦ 1 ;
STACK [STACKINDEX] :« ITEM

end ;

This sequence subtly shows several PCM facilities. First, by accepting the de'inition, the
program is syntactically correct. Second, notice that the structure of the PCM output of
PUSH is different from the structure the user typed in the definition. The PCM has
already discarded the text lines input by the user. The definition of PUSH is maintained
in an internal form reflecting the structure of the particular programming language.
Upon request, this form is converted to text lines reflecting the internal structure. Note
also that the user did not have to say what to ^rjnt, and until he mentions another
global name he will always be referring to PUSH. Tne PCM maintains two pointers —
one to the current definition and one internal to the definition which is the structure of
current interest. These are the same at this point, but this will change on the user's
next input.

Although we did not see the user define POP, a message was printed to him at that time.
POP uses STACKINDEX in the reverse order of PUSH. At the time of the definition,
STACKINDEX had not been on the left hand side of an assignment statement. The user
received the following message:

WARNING - possible use of STACKINDEX before
it was assigned a value.

Notice that this is only a warning. Because it does not know the control flow during
program execution, the PCM can never be absolutely sure that STACKINDEX will not
have a value before it is used; at the time POP was defined a value had never been
assigned, so it gave a warning. The user is now responsible fo • seeing that it receives
a value. He may, of course, ask for a list of these warnings at any time.

He now realizes, since STACK is an array, that STACKINDEX might exceed the dimension
of STACK. He decides he should change PUSH to first check STACKINDEX to see if it will
exceed the dimension on the array STACK if incremented by one. If this is the case, he
wants PUSH to call a system procedure ERROR, which will cause the program to abort.

<- FIND BEGIN

begin «STACKiNDEX...!» ; «STACK...ITEM» end

The PCM has found the first (and in this case the only) instance of "begin" and has

n ■wmm • • «•mfrmfW^^fJMiin J

tHMMMMH

l l ■lllJ **^lfl<«H

INTRODUCTION

changed the Current Interest Pointer (CIP) to point to the structure containing it. The
KCM prmts out m a short notation the structure pointed to by the CIP. This output
again re lects the program structure, but in a different form. This form outputs the
subst.uctures in a lin.ted format. The characters "«'• ". . - and s>" wer8 lied

by ^e expert to signify the beginning, middle, and end of a substructure.?or this output
orm. The PCM uses these characters and the first and last lexeme of the substructure

to create the output form. This gives the user, in a shorter and less costly way, an idea
of where the CIP is currently pointing, it also gives a less than experienced
programmer a better idea of the structures of the particular language. He decides to
surround the statement that increments STACKIMDEX with an "if" statement in order to
first rN A its value against the dimension of STACK. But first he needs to make that
statement the one pointed to by the CIP. He could, of course, type "FIND STACKINDEX"
but he can also use a number indicating the position in the short output form. Each top-
level element and each substructure count as one in this numbering scheme.

<-G0 2

STACKINDEX :- «STACKINDEX... 1»

Now he is pointing to the first statement of the block, which was the second element of
the short output form last typed to him. Also notice that the new substructure is the
expression following the assignment operator. Here again, the structure of the language
is reflected to the user. He would now like to wrap an "if" statement around it.

He could, of course, replace the assignment statement -- which is the statement pointed
to by the CIP -- with an if" statement. But since the new "if" statement will have the
assignment statement as a part of it, the programmer can use the EMBED command This
command is equivalent to replacing the program segment pointed to by the CIP with a
new program segment typ-d by the user in which the old program segment appeared as
part ofthe new program <.egment. In the EMBED command, the new program segment

Z»J? ,eUSer ,S searched' bef0 e Parsing. »Of an occurrence of the sped«! symbol
« . When it is encountered, the T in the new program segment is replaced by the old

program segment pointed to by the CIP. Of course, the syntax of the language mus» oe
mamtamed. But since an assignment statement can be the else clause of an "if"
statement, the user types the following:

<- EMBED "IF STACKINDEX-STACKUMIT THEN ERROR ELSE S

If there were no errors in the program segment just input, the PCM would have typed
the following to the user:

if «STACKINDEX...STACKLIMIT» then ERROR else
«STACKINDEX...1»

MMMMMMMBtfriUMlli _
j

^ "'
9mm*~*mmm

 " --■ , " ■■'•"»'«

INTRODUCTION

This shows the new program segment has been accepted by the PCM. Notice that the
old assignment statement is now the else clause of the new "if statement But the PCM
has encountered some semantic "errors" and begins the following dialogue with the
programmer:

STACKLIMIT undefined - is it global? YES

The PCM could not find STACKLIMIT in its structure. It first tried to correct a spelling or
clerical error, but it did not find a close match. It then tried to further resolve the
situation. It asks the user if it is global. The user responds affirmatively and the PCM
proceeds. If the user had responded negatively, the PCM would then ask if the user
would like to drop into a lower edit ind resolve the situation himself. We will see an
example of this in a slightly different situation below. The PCM continues to process
the EMBED command.

system procedure ERROR requires one parameter
do you want to edit? YES

«ERROR»

The PCM finds a semantic error. It is context-dependent on ERROR having one
paramater. This information about system procedures was again supplied by the expert.
The PCM then asks the user if he wants to edit to correct this error. He does, and the
PCM prints the program segment at the point of the error, which because of the error
is also set as the new CIP.

<-- PARAMETERS? ERROR

first parameter is MESSAGE : char

<~ EMBED "8 ('stack overflow')"

«ERROR...)»

Notice that the herald has changed to M<—", which indicates to the user that he is in a
lower edit and that the initial error is suspended waiting for this edit to return. When it
does, it will check to see if the error has been resolved. The user then as,' - for the
arguments (parameters) to ERROR and then edits the structure to add the error
message.

<-- DONE

OK

■ MUMMMMM

HP - ■"
■m

INTRODUCTION

The user rdturned and the PCM was satisfied. The PCM now continues and finally
succeeds in executing the original EMBED command.

if «STACKINDEX...STACKUMIT>> than «ERROR..)» else
«STACKINDEX... I»

<-TOP

<- PRINT

procedure PUSH (ITEM : CHAR) ;
befin

if STACKINDEX > STACKUMIT
then ERROR ('stack overflow')
else STACKINDEX :> STACKINDEX * 1 ;

STACK [STACKINDEX] :- ITEM
end ;

The user resets the CIP to the beginning ci the procedure via the HTO,M command.
Then he asked to see the entire procedure definition. He then remembers that
STACKLIMIT is still undefined.

<- DEFINE "var STACKLIMITrlNTEGERi"

var STACKLIMIT defined

<- UNDEFINED?

function LEW.

The only undefined global referenced by some othe.- procedure or function is LEVEL,
which is the function that assigns a precedence number for al! lexical units.

<- DEFINE "function LEVEL(LEXEME:CHAR) : INTEGER;
begin case LEXEME of
T : LEVEL:-5;
V, T : LEV£L:-4;
V, '-' : LEVELS;
'<', '-', V : LEVEL:-2;
T, V : LEVEL:-1;
T : LEV£L:-0
end end;"

function LEVEL defined

10

i IM MTMi—Mfrllfct - -

ii]lpi«mM«Bvimipm<HP«MPw«w«*'p^<iM n i i v* ii<''i«^m^myfmmr*m^mm—mmrmv"*i*—m< ■ «wpm

< PRINT

function LEVEL (LEXEME : CHAR) INTEGER ;
b«|in

cas« LEXEME of
T • LEVEL :- 5 ;
'*• , 7' : LEVEL :- 4 ;
v, •-• : LEVEL :• 3 ;
v, '■• , •>• : LEVEL :■ 2 ;
T, •«-, : LEVEL :- 1 ;
T: LEVEL :« 0

•nd
•nd ;

INTRODUCTION

In the semantics of the language PASCAL the value of ß function is the last value
assignei to the name of ths function before it returns. The user now has a function
which will return a number for each of the allowed operators plus the parentheses. It
itill needs tc return a number for variabias.

<- FIND begin

begin «case.end» end

<- INSERT BEFORE 2 "LEVL :-6M

syntax error
adding V to input after ":» 6" — OK? YES

LEVL undefined — is it LEVEL? YES

begin «LEVEL...6» ; «ea8e...end» end

<- PRINT

begin
LEVEL :« 6 ;
case LEXEME of

T : LEVEL :■ 5 ;
V , 7» : LEVEL :• 4 ;
V , '-• . LEVEL :- 3 ;
•<• , •-• , •>• t LEVEL :- 2 ;
T , ••- . LEVEL :- I j
•)•: LEVEL :• 0

end
end

11

- - — — — ^- iiMiie i i am - -— - . ~- ■>_ - -Ttm m^a^m»m i n ■

■ I """—" p—I— —~- w^^wimm**'*

INTRODUCTION

Here we see the first syrtax error. The parse s suspended and the s/ntax error
corrector finds that the parse could continue if a semicolon were added to end the
statement. It asks the user, who responds affirmatively. The parse continues arvl
succeeds. But then a "semantic" error is encountered. LEVL could not be found (similar
to STACKLIMIT above), but a close spelling match was found with LEVEL. The PCM
continues and prints out the resu t of the above addition.

Now there are no undefined globes. The user does want to check, however, to see if
there are any routines that use STACK inadvertently (i.e., not a stack manipulation
function).

<- USES? STACK

STACK used in POP, PUSH, STACKEMPTY, TOS

The user is now satisfied that STACK is used only by the appropriate routines. At this point
the user could do several things, depending on what other facilities were available .o him
The next goal of this research would be to incorporate into the same environment an
mterpreter/debugger/compiler system for e Nation and logical debugging in which the
debugger communicates with the user in a style compatible with the programming language
and m its terms and structures. Until this goal of being able to execute and debug the
programs in the same environment is reached, the user could write out his programs cnto the
file system and then have them compiled by the appropriate compiler. Even this could
greatly help the user. By knowing that his programs arr syntactically correct and his symbol
table information is correct, he gams a great deal of confidence about the sjccess of the
compilation on the first try, and can then concentrate on his logical errors. The ultimate goal
of this research would be an ever-expanding environment encompassing all helpful facilities as
they are developed (as initially discussed in Section 1.1).

1.4 SYSTEM OVF.KVlhW

Although the example session dealt with PASCAL, the PCM is language-independent. A
detmition of PASCAL had been previously input and the PCM useJ this definition to take the
appropriate actions relative to the particular programming language. The language definition
is given in a formalism for describing syntactic information and certain semantic information
about the use of names in the language. This description is then used to build the internal
structure for a particular statement in the language. It is also used to decide which actions
are legal for the user to instigate and for error prevention and correction. That is, there
are three major components of the PCM:

1.

2.

The formalism for describing, by a language expert, the syntax and certain
semantics of programming languages.

The structure used to hold the program in internal form and maintain information
concerning the use of names.

12

■■■■--■ ■---'- -" - ■ —-w •■—- - ■ ■ --

- ■ - mm ww"

INTRODUCTION

3. The methods — including the parser -- which use the formalism as a guide in the
manipulation of the structure.

Each of these will be discussed in detail in forthcoming chapters, but a short informel
discussion is presented here to give the reader an overview of the entire PCM.

The PCM Language Formalitm

This newly designed formalism is the key to the LIBNI aspects of the PCM. All methods —
used Kere to mean any action taken by the PCM -- are based on the formalism. That is, each
action has different constraints and possibly different results based on the kind of mechanism
in the formalism used to describe a particular program construct.

This formalism is a production language* whose left-hand side is a genet,, term of the
grammar. The right-hand side is made up of other generic terms (i.e., nonterminals), terminals,
and five metaconstructs, which are descriptions of how to determine the positioning and
occurrences of generic terms and terminals within their scope. Their use will be made clear
by their enumeration.

1. Ordered Sequence — A linear sequence of items in the grammar. For example, an
assignment statement in a particular programming language may be an identifier,
followed by the assignment operator, say ":-", followed by an expression. This is
an Ordered Sequence with two nonterminals — identifier and expression — and
one terminal -- **:-".

2. Alternative Set — A set of items in the grammar, of which only one can appear at
that particular point. A nonterminal called "operator" might have as its production
the Alternative Set containing "+", "-", "*", "/", and "T".

3. Alternating Sequence — A metaconstruct reflecting a finite but unlimited number
of alternations of two items. It also requires that this sequence start and end
with .in instance J the first ite: . For example, a set of statements may be an
Alternatinj Sequence with the first item being the generic term statement and the
second item being the terminal semicolon.

4. Bracketed Sequence — A sequence of three items in the grammar, of which the
first and last items must be terminals and the middle item can be of any form.
This can be seen in parameter lists where the first and last items are "(" and ")"
res> actively and the middle item is an Alternating Sequence of expressions and
commas.

5. Repeating Sequence — An unlimited number of repetitions of one item in the

• Terminology used in this paper is in common usage when discussing formal language
descriptions (e.g., terminal, nonterminal, productions, etc.). For n discussion of these terms
see John E. Hopcroft and Jeffrey D. Ullman, Formtl Languages and Their Relation to
Automata (Reading, Mass.: Addison-Wesley Publishing Conpany, 1969).

13

W ■'" ^mmn^m^mm» ■HWP^^ "im«

INTRODUCTION

grammar. For example, an identifier in ALGOL 60 would be described in this
formalism as an Ordered Sequence of an alphabetic character followed by a
Repeating Sequence of an Alternative Set of alphabetics and numeric characters.

This set of metaconstructs gives the expert a flexible and natural way to express the
grammatical structures of programming languages.

There is one other construct in the formalism, but it does not der.cribe any syntax. Instead, it
is a declarative statement about the use of names in the language. If a production rule
succeeds (i.e., matches some input), this statement becomes reflected in the structure. For
example, in an ALGOL 60 program, after the successful parsing of a declaration statement, the
variable is now defined and has an arsociated data type. This will be reflected in the
structure which holds that particular program segment.

As was stated previously, actions taken by the PCM use as their basis for decisionmaking the
language description written in this formalism. It also uses it as a template for the structure
which internally holds the program and its associated information.

The Structure for Holding Programs

The PCM structure is the data base which reflects the dynamic state of program construction.
For a single program, it is a highly augmented H-ary parse tree of that program. It is also the
"organizer" or "file system" for a set of programs. This structure, which represents the user's
PCM activities, is called PCMREP. It differs from a normal parse tree in several ways.

First, all terminals are maintained in the tree. That is, if a program traversed PCMREP from
left to right and top down (i.e., preorder) and output every leaf node, the user would see
every character he had input, including "grouping" terminals such as parentheses. There are
three reasons for this. First, the structure can easily be unparsed for presentation to the
user. Second, any change in the program is a change in PCMREP and is immediately reflected
to the user. Third, the programmer will not lose the ability to use as a visual aid groupings
(such as parentheses) that do not cause a change in the parsing.

Next, each segment in PCMREP which represents a production rule in the formalism has a
reference to that rule and the alternative, if there was one, on the right-hand side of that rule
which caused Jhat rule to succeed. This information is used by the PCM for certain
interaclions with the parsing mechanism. In the example session, when the user wanted to
insert »he assignment statement before the case statement, the PCM looked at the production
for a block, saw that the only legitimate possibility for an insertion there was an Alternating
Sequence of statements and semicolons, i.e., a block is a "begin" followed by alternating
statements and semicolons and finished by an "end", therefore the user could only be inserting
statements and semicolons. The PCM started the parser on that Alternating Sequence. When
the parser finished, the PCM addod the new segment to the existing PCMREP, thus saving any
unnecessary unparsing and reparsing of the entire program structure. This information is also
used by the PCM with no parsing interaction. For example, if the programmer wanted to
delete some segment, the PCM would first check to make sure that fie deletion did not cause a
syntactic discrepancy in the more global structure.

14

'**'*'

INTRODUCTION

The fhird difference is a spec*a! node in PCMREP called the acre*» node. Access nodes appear
in the structure whenever a new naming context would be created during program compilation.
Access nodes are extended symbol fables for every symbol used in the tree below it. Each
entry has a series of attributes which describe not only its data type, but also information
concerning where it is used, where it is set, where it is created (declared), how to acc«ss the
parent node if it was not created in the s.liucture below, and possibly a syntactic pattern
which must follow it (e.g.. number of parameters). This information is used by the PCM to
determine semantic consistencies 2id to provide information vo the user. We saw several
occurrences of this .n the example session.

Although the formalism ard the structure are both integral parts of the Pv,M, they are passive
in that they are manipulated but not manipulating. The active part of the PCM is in the
facilities which establish a symbiosis between a programmer ana the computer in working
toward the goal of corrert program construction.

The PCM /letivitiet

The PCM activity can be divided into two major sections: (i) the parsing technique, which
includes error correction, and (2) the manipulation and presentation of the structure and error
prevention.

The parsing mechanism builds the appropriate substructure for insertion into PCMREP »r.d also
takes care of the syntactic and semanli.- errors. An important part of the correction facilities
lies in the concept of the user as a process, which was first discussed by Alan Kay and James
Mitchell in their dissertations ([Kay 69] and [Mitchell 70]). During correction the user can be
invoked to answer questions and take actions. The PCM does not have to make erroneous
corrections or assumptions, since the user is always available for advice.

The parsing mechanism operates in two distinct phases, both wii^i their own correctors (see
Figure 1). First the input is parsed, which might involve the s, ntax corrector and the user.
By the time this process is complete, the structure is syntactically correct and, except for the
semantics, is ready to be inserted into the program structure. During the parse, the semantic
statements have been built up and are now ready to be processed by the semantic checker. If
the checker finds an error or discrepancy, it invokes tht semantic corrector, which may again
interact with the user. When this process is complete, the PCM knows that whatever
modification was made to the structure is correct.

The manipulation functions firs' analyze the request in the current contexi on the basis of
rules based on the formalism. If it i? necessary to invoke the parsing mechanism, each
function initiates it with an appropriate production rule. For example, at some points in
PCMREP a delete of a particular node is not valid because it would cause a syntactic
inconsistency. Before any modification is really made to the structure, the delete function will
make sure that it is a valid operation.

The presentation liinctions are divided into two modes: the long form ("pretty print") and the
short form ("structure print"). Both are based on the metaconstructs of th* formalism. For
example, in long-form-mode processing of a Bracketed Sequence, it is first determined if all of
the text cjin be output on the remainder of the current line. If not, and if the start and finish

15

r ■MB —— -•" '■ ■•—'

INTRODUCTION

Input
string

Goal oai -- -»

Figure 1. PCM's parsing mechanism

terminals are alphabetic, then the start terminal is output on one line, and the middle form is
output using its own rules, followed by the end terminal on its own line. Of course, all this is
done with the appropriate indentation.

The PCM system, as overviewed above, will be described in detail in Chapters 3, A, and 5.
Chapter 2 discusses the previous research in areas coinciding with parts of the PCM and
makes comparisons between the former and the latter. Conclusions and suggestions for future
research will be given in Chapter 6.

16

.-.

 •■' ■

CHAPTtR 2

/ISSOCIWEDRKSK/IRCII

This research focuses on language independent tools for programming environments.
Although there are many such tools -- editors, debuggers, etc. — most are ignorant of the
particular syntactic and semantic structures of the languages with which they are used. Below
we deal primarily with environment tools which are language-independent but adaptable to
deaf with particular languages. The lar.guage-im.>pendent aspect of other research will be
stressed because a generalization of the appropriate concepts was necessary to raise them to
a state of language independence. This chapter mainly deals with language editors,
presentation facilities, and error-correcting parsers.

2.1 MNCU/ICK EDITORS

Language editors can be divided into two categories: language-dependent and language-
independent. The former are editors written for a particular programming language. Both
categories of editors are in some form of interactive system, for the most part, only editors
which edit the structures in the language are of interest.

l.angua a-Dependent Editor*

Several interactive systems have built-in text editors (e.g., APL, JOSS, JOVIAL), but the user
edits the text string representation of the program. An extension of this was provided for the
JOVIAL system [Bratman, et al. 68], where each line was checked for syntax errors after the
editing of that line. It also had some primitive globals checks ~ for example, that there be the
same number of BEGINs and ENOs. More recently, in COPILOT, a system for a multiple
processing environment, a CRT-oriented text editor was provided and reparsing was
accomplished ju't prior to program execution [Swinehart 74].

The INTERLISP editor is a language editor which uses as its basis for editing the language
structure and not text. LISP has only one structure for programs — a binary tree (and, of
course, atoms); a canonical list representation is defined in terms of these primitives. The
editor has facilities for moving, deleting, and adding list structures. It also provides several
ways to move through and present the lists. Also, since the program structure is identical to
the data structure, a user may use the san.e editor to edit his data structures. In fact, Robert
Balzer [Balzer 74], an INTERLISP user, considered it such a good programming environment
that he, as an experiment, tried to use it as a front-end to the ECL programming system.»

• ECL is another interactive programming system. For a description of the language
and system see Wegbreit 71.

17

 ■ ■ ■ ■ —

I
turn

 mmt M

m

ASSOCIATED RESEARCH

Besidesd taking advantage of several environment features, he also used the INTERLISP editor
by putting parentheses around ECL statements and then had INTERLISP read it as a list
structure which could then be edited by INTERUSP's structured editor. Unfortunately, this
changed ECL's syntax.

Because of the dynamic properties of LISP, the only intelligence the editor can exhibit is to
insure that the program is syntactically a correct list structure. For the same rtasor,, this is
all the PCM could accomplish with LISP, if it were tried. But because INTERLISP also has an
execution environment. Warren Teitelman has provided a run-time error correction facility
which includes spelling correction and parentheses mismatch correcti. a

Although the PCM can operate with a definition of the language LISP, it is more oriented to
less dynamic programming languages: languages which have static scope rules and, preferably,
declare." variables. This allows the PCM to make static semantic analyses, which must be put
off until program execution time in languages similar to LISP.

Language-hide pendent I'diiom

Little research has been done in this area but there are two systems. The first, done by
Wilfred J. Hansen, called EMILY [Hansen 71], uses a Backus-Naur Form (BNF) for the language
description formalism. The user sits at a graphical display equipped with a lightpen. Starting
from the initial BNF rule, the possible alternatives are presented to the user. Using the
lighipen he selects the desired alternativ«, and the alternatives for that rule are presented.
He repeats this process until he reaches a rule which needs a user-input lexeme (i.e., a
variable name or constant from the keyboard). The user never inputs constant terminals of
the langu 6e, such as key words, operators, parentheses, etc. He selects the alternative which
produces those terminals. Since the user is driven by the BNF description, he can never input
incorrect syntax. All the user can do is select alternative rules and input identifier, string, and
numeric constants. This may appear at first glance to be an evcellent system for program
input, but even Hansen agrees that except for its possible use as a pedagogical tool for
teaching a new programming language syntax it is too tedious to use as a creative tool. One
example, in his report, shows the user at the BNF rule <ASGN STMT>« and he desires to input

S - S + A(l) ;

This requires eleven selections of alternatives using the lightpen and four interspersed
keyboard entries for the variables, for a total of fifteen separate interactions with the system.
Even a novice programmer would quickly find this excessive. He does, however, provide a
simple symbol table which allows the user to iteratively view each program fragment in which
that symbol appears.

A similar system, in fact based on the above research, was done by David Lasker, but it is not
entirely language-independent [Lasker 74]. He input the definition of the programming
language SUE [Atwood, et al. 71] by its BNF description, but he added an "escape" alternative

• The BNF describes a subset of PL/1 and this rule describes the assignment statement
for that language.

18

■

^^mmm^mmmim**im~~^r^*^m^m^**mmmmmmB^*^~^~~^^**m^*^^*mm~~m~****^~*~*~*~^mHmiwmmimmmmmm

ASSOCIATED RESEARCH

for the rule <EXPRESSION> which invoked a parser for expression« in SUE. He also added »
user-invoKed function for discovering undeclared identifiers. Both of these ade d features
were written dependent on the definition of SUE.

2.2 PROCR/1M PRESENT/ITIOV hWlCIUTIKS

Most tools which format programs are language-dependent. STYLE, a program for formatting
ANSI-FORTRAN programs [Lang 72], is a batch-run system which rearranges progri'ms using a
standard algorithm. But it can be directed by parameters supplied by the user specifying such
formats as the amount of indentation for a DO loop. It also does a minimal amount of syntax
checking.

FORTRAN has a very limited structure; thus, more interesting are the facilities for formatting
programs found in most LISP systems — a highly structured language. These automatically
construct text output which reflect the structure and nesting of internal lists. Ira Goldstein
describes several algorithms with different rates of success for this, function [Goldstein 73].

The EMILY-based systems, the only language-independent systems which format programs, are
directed by the expert who wrote the BNF description of the programming language. The BNF
contains formatting instructions such as indenting, when to go to the next line, etc. That is,
the EMILY systems do no computation based on the line length, the program structure, etc.,
and are dependent on the expert to determine the correct output format.

2.3 KRROR-CORRKCTING PARSERS

Language-independent parsing techniques which have a considerable degree of error
correction have been appearing in the literature in the last several years.* They assume that
the input is reasonably close to being a correct program and that the fewest changes mad« vo
the input will yield the "best" results. This is referred to as minimum diKtancn correction,
where distance is measured as the difference between the original input string and the
modified string. Tlvs is formally treated in [Peterson 72]. He gives an algorithm for this form
of correction; unfortuiiately, it is very slow: it is proportionate in time to the cube of the
leng*h of the input string. It was argued that this is unrealistic for compilers, and studies
were made to decrease this to a time linearly proportionate to the length of the inpit string
([Levy 71] and [Peterson 72]). These are not minimum distance algorithms, but have heuristics
trying to approach the results of minimum distance correction. The above papers treat this as
a formal language problem and report no actual implementations . Other research was done
with running parsers using different heuristics and the results have been excellent
([LaFrance 71], [James 72], and [Johns 74]), that is, usually better when compared with
language-dependent parsers with their own built-in error correction.

All of these programs were designed for "batch" compilation and thus cannot receive advice
from the creator of the program. And since the corrections are not necessarily the "correct"
correction, they sometimes cause more errors farther along in the parse. These are referred

• The earliest work appeared in 1963 by E.T. Irons.

19

iiimainill ■ -— —^ '■■■- -■...—<■- .- ..^ rmriiM ■in ■■in ii . r—-^—*^. - - -. . -*- — » -^-* . --^...

r rmm

ASSOCIATED RESEARCH

to as avalanche errors. When an avalanche is detected, the better programs try to recover by
d.scardmg elements of the input string until a safe delimiter appears (often a semicolon) that
will let them continue parsing.

The PCM, on the other hand, is an interactive system in which the u:er plays a vital role The
user is consulted on corrections and he can, in certain cases, edit the input string either by
direct intervention or by the corrector exceeding constraints of time or number of changes.

?JB
C0MSce'rr,heI'ure™Ch Can be indirec,|y associated as influential on this research effort

«J.g, IMLS [Engelbart 70])j when particularly relevant, it will be mentioned briefly in the text.

The remainder of this report will give the reader a Hetailed accounting of the PCM design followed
by a summary and suggestion for further study.

20

 . -^..-
 - - - ■ - - . - - - - - —■*

J

"'■' " ■ '■ ■•"■■—• ~mmmmnmm*<™«it i ■ ■ -.."-.—-^— .—^_^.,-,.,.. ^,. _ ~i*mm

CHAPTER 3

THE fORUflUSM FOR L/iNCUACIi DEFINITION

The new formalism presented here is the mechanism whereby the expert describes a
particular programming language to the PCM. This description drives not only the parsing
mechanism, but also the information base whereby the PCM activities determine the legitimacy
of a particular operation on some portion of PCMREP. These activities will be described in
Chapter 5.

The formalism is a production system which contains a sequence of statements of the form

nonterminal -> definition

Each definition is (1) another nonterminal, (2) a terminal, or (3) one of the metaconstructs.
Each metaconstruct contains elements which can also be nonterminals, terminals, and other
metaconstructs.

Before the metaconstructs are presented, a few notational considerations must be discussed.
Each element of a definition is called a form of the grammar and is designated in the notation
as f.n where n is a number or letter used as a subscript. Ellipses are used in the notation and
examples to designate missing forms; they are not elements of the formalism. Terminals in the
grammar are enclosed in single quotes and nonterminals are lower case character strings (not
including space) not enclosed in quotes. Where terminals are necessary in the notation, they
will be designated as t.n (a subset of f.n). Example uses of the metaconstructs will be taken
from several high-level programming languages.

3.1 THE MET/ICONSTKUCTS

Ordered Sequence
Notation: [f.l f.2 . . . f.n 1

An Ordered Sequence describes a linear sequence of forms in the grammar. For this
metaconstruct to match some input, i.e., succeed, an instance of each form must be
recognized in the order they appear in the notation.

21

—-^-~-- - ^ - - ■--■ -■ -" ■-^^i»-^^-^^^----^W_k^^--^„..... : .. ^„^ ^

»•«■■•wwwiwmw '"Pii "i I i III M«i WW^^"^ NiPWimM in . .. I^W»!PW»»P»W»^^^^"I"^S«^W^^ i i ■ i i numi^ ^mmmm^r ■^IWII"W"'"^wwi^HIW

THE FORMALISM FOR LANGUAGE DEFINITION

Examples:

assign-stmt -> [identifier 'V expression]

while-stmt -> ['WHILE' booltan-expression 'DO' statement]

if-stmt -> ['IF' boolean-expression 'THEN' statement
'ELSE' statement]

/lltentniivc Srt
Notation: { f.l | f.2 | . . . | f.n }

An Alternative Set is a set of forms of which one form must match the input. The first
form matched causes the metaconstruct to succeed, and no further matching is tried.
There is a special form, EMPTY, which causes an immediate succeed with no input being
recognized. This should, of course, be placed at the end of the set.®
Examples:

statement -> { assign-stmt | while-stmt | . . . | if-stmt)

labled-stmt -> [{ [label ':'] | EMPTY } statement]

and this extended definition from the previous examples

if-stmt -> ['IF' boolean-expression 'THEN' statement
{ ['ELSE' statement] | EMPTY }]

/lUernating Sequence
Notation: < f.l f.2 >

An Alternating Sequence represents finite but unlimited instances of alternations of the
two forms. This sequence must begin with an instance of f.l and end with an instance
of f.l. This sequence may, at a minimum, be a single instance of f.l.
Examples:

block-body -> < statement V >

doclaration-stmt -> ['DECLARE' < identifier ',' > data-type]

and this production without precedence

arith-express;on -> < identifier { '+' |V | . . . | T } >

• This is not a definition issue (for that it could be placed anywhere in the Alternative
Set), but rather an issue for the recognizer which is driven by a left-to-right try of each form.

22

 ^^MM^*M -üaäaüBBAMIIIHHMHii

1
«■" "Hi1

1

THE FORMALISM FOR LANGUAGE DEFINITION

lirackclcd Scqucncv
Notation: [) t.l f.l t.2 (]

The Bracketed Sequence is a special form of the Ordered Sequence. It is a three-
element sequence with the terminals of tha grammar (t.l and t.2) surrounding the inner
form (f.l). This metaconsfruct is provided since it occurs often and aids in error
prevention.
Examples:

paramster-list -> [) '(' < expression V > ')' (]

block -> [) 'BFGIN' block-body 'END' (]

arith-expression -> < { identifier | [)'(' arifh-expression •)' (] }
{ '+' | V | . . . | T } >

Repeating Sequence
Notation: [* f.l *]

A Repeating Sequence represents a sequence of one or more occurrences of the form
enclosed.
Examples:

block -> [) 'BEGIN' { [* [declaration-stmt ';'] *] | EMPTY }
< statement ';' > 'END' (]

identifier -> [letter { f» { letter | digit } *] | EMPTY }]

This ends the syntactical portion of the formalism. The semantic portion of the formalism will
be presented more easily after the structure is discussed. It will be described in Section
5.4, which discusses the semantic checker.

3.2 WHY NOT IINF?

A legitimate question might be raised as to the necessity of a new syntactic formalism — "Why
not BNF?" There are three major reasons for not using BNF or one of its de -ivatives. The
first, which has bjon argued elsewhere, is that BNF forces excessive structure when the
grammar has rules for an indeterminate number of repetitions of a sequence. BNF forces the
use of recursion to generate a deep structure when a linear structure is really the intuitively
desired one. Example:

<parameter list> •:- <expression> , <parameter list> | <expression>

This construct will generate the structure in Figure 2, but the desired structure can be
expressed in the PCM formalism as

parameter-list -> Expression ',' >

and g' rates the linear structure in Figure 3.

23

"■■"I
"' ■ ^m^mam^mm^mpmmi^^^^i" i"""11

THE FORMALISM FOR LANGUAGE DEFINITION

<porameter lisf>

<exr;e$$lon> ^parameter li$t>

<expre$$ion> ^rameter llit>

<expre$$lon> <parameter |}st>

Flgor» 2. Th« Tree for

<parameter ll$t> ::= ^xpresiiof^ , <parameter list> I <expra»!on>

24

parameter list

expression expression expression

Figure 3. The Tree for

parameter-list -> < expression '/>

 — >■ ^u^^ffn-nuitu,

—•• —'■• ■"■• — ■■' -■—'
mmm-'

^

THE FORMALISM FOR LANGUAGE DEFINITION

Not only dot-, the BNF cause the intuitively wrong structure, but it also generates excessive
nonterminals (i.e., <parameter-list>). This is counter-intuitive. The expert may even decide to
linearize constructs with precedences, such as arithmetic expressions, for ease in editing.
Also, the linear structure is more earily converted to text for presentation to the programmer.

The second reason is related to the first, but it also covers a broader spectrum. The PCM
formalism gives the expert the ability to describe language constructs straightforwardly while
BNF forces the expert to describe his language indirectly. This is reflected in the excessive
number of nonterminals for a particular language. A simple example will serve as an
illustration.

<block> ::- BEGIN <block body> END
«"block body> ::- <statement> i <block body> | <statement>

versus

block -> [) 'BEGIN' < statement V > 'END' (]

This concise method of describing a language syntax can be further illustrated through the
syntactic description of PASCAL through the statement level (i.e., from program to block to
statement). The BNF description of just the PASCAL language construct, "statement", as found
in [Jensen 74] uses twenty-two nonterminals (productions) to describe the same syntax as the
single nonterminal, "statement", found in the following:

program -> [block '.']

block ->

[[* { [) "LABEL' < unsigned-integer ',' > ';' (] |
['CONST' [* [identifier '-' constant ';'] •)] |
['TYPE' [» [identifier '-' type ';'] *]] |
['VAR' [» [< identifier ',' > ':' type V] *]] |
[{ ['PROCEDURE' idßntifier parameter-list] |

['FUNCTION' identifier parameter-list ':' type-identifier] }
[) V block V (] } *]

[) 'BEGIN' < statement ';' > 'END' (]]

statement
[{

{
[i.nsigned-mteger ':'] | EMPTY }
[{ variable | function-identifie' } ':-' expression] |
[procedure-identifier { [) '(' < expression ',' > ')' (] | EMPTY }] |
[) 'BEGIN' < statement ';' > 'END- (] |
['IF' expression 'THEN' statement | ['ELSE' statement] ! EMPTY }] |
['CASE' expression 'OF' < [< constant ',' > ':' statement] ';' > "END'] |
['WHILE' expression 'DO' statement] |
['REPEAT' < statement ';' > 'UNTIL' cvpression] |
['FOR' variable-identifier ':=' expression | 'TO' | 'DOWNTO' }

expression 'DO' statement] j
['WITH' <variable ',' > *D0' statement] |
['GOTO' unsigned-integer] }]

25

■MaaaMMMMaBaaMMMlaaMK

—————— HPWMRII^OTH» mmmi*

THE FORMALISM FOR LANGUAGE DEFINITION

The third and most important reason for a syntactic description using multiple metaconstructs
is to provide the PCM a high-level view of the syntax. The PCM operations vary depending on
which metaconstruct generated the structure being manipulated. For example, an insertion
into the structure is valid for an Alternating Sequence, since there may be any number of
alternations. But an insertion is valid in an Ordered Sequence only if the position of the
insertion is the EMPTY alternative of an Alternative Set within the Ordered Sequence. An
example oMhn may be found in the PASCAL description above, where the description of the
PASCAL "if" statement has as its fifth form either an else-clause or EMPTY. If initially the PCM
user had by default used the EMPTY alternative, he could then later insert an else-clause.

An a-^logy on the semantic level can be made. Consider a programmer (the PCM) trying to
change another programmer's work. If the program was written in a high-level programming
language (the PCM formalism) rather than assembler language (BNF), then there is a better
chance the programmer will more easily see the intent and structure of th.,- program and also
be more confident that the changer, he makes are valid.

This formalism is used as the template for the structure which will hold the programs being
constructed. This structure (PCMREP) is presented next, followed by a description of the
methods used to modify, construct, and present this structure to the user.

26

. -^.^.. .—.■^-.^J-
■ - ■

■OT^OT mmam mmimmmi

CHAPTER 4

THE STRUCTURK FOR HOLDING PROGRAMS

The PCM structure (PCMREP) is the data base which functions as a file system for a
programming effort and a receptacle for parsed programs. Although it is similar to a normal
parse tree, considerable extra information is associated with the nodes to facilitate the various
editing and display operations. In the discussion below, the differences from standard parse
trees will be emphasised.

4.1 THE PARSED STRUCTURK

First, all terminal symbols are maintained in the structure; this includes operators, parentheses,
key words, etc. as seen in Figure 4. There are several reasons for this.

• The structure can easily be unparsed or presentation to the user. There is no
need to compute whether "grouping" termmals are necessary during the unparse.

• There is no need to maintain a separate string representation of a program which
needs to be updated whenever a modification takes place. Any change in the
program is a change in PCMREP and is immediately reflected to the user.

• The programmer will always see the program as it was input, except for the
structuring, of course. For example, in a logical expression he may use
parentheses wnich do not change the result of the parse but which are used by
the programmer as a visual aid for later review.

Also, each nonterminal in PCMREP contains some associated information about the parse. It
contains not only which rule in the formalism caused the succes^iui completion of that part of
the parse, but also which alternative of that rule. This information is used by the PCM to
determine legitimate manipulations. Fc- example, in Figure 4 the uppermost statement
nonterminal has a pointer to

['IF' expression 'THEN' statement { ['ELSE' statement] | EMPTY }]

If the programmer requested to insert some piece of program after element four, the PCM
would see the Alternative Set

{ ['ELSE' statement] | EMPTY }

after element four and see that EMPTY was the initial aliernative chusen and start the parsing
mechanism using as its goal

27

——^pp m^mmcm^—

^

THE STRUCTURE FOR HOLDING PROGRAMS

.1

\y

28

. ■
 _ .-.- — — J

mm •' wmmmm
mmmm mmmmmmmm

 '■

MM
"■H^B" ■ —

THE STRUCTURE FOR HOLDING PROGRAMS

goal -> { ['ELSE' statement] | EMPTY)

Or, alternatively, if there was already an else-clause, the PCM would not allow the user that
modification, but it would allow the deletion of the olse-clause without invoking the parsing
mechanism at all by replacing it with EMPTY. This saves any unnecessary unparsing and
reparsing.

4.2 ACCESS NODES

Access nodes are special information nodes which maintain the correct relationship between
symbols. They appear in PCMREP whenever a new naming context would be created during
program compilation. This node contains information concerning «tw»ry symbol to which the
program would have access. The PCM maintains two access nodes — system and global —
which reside at the top of PCMREP. Eac!. access node maintains two sets of information: a
pointer to the next access node more global in scope and a symbol table of all symbols which
are referenced in the scope of this access node. This structure can be seen in Figure 5.
Here we see a global procedure FOG (each box in this figure with a name in it represents an
element of the symbol table for that access node). Each entry in the symbol table contains a
considerable amount of information concerning the use of that symbol in the structure below
it. We will see the exact information later in this section.
We are now concerned with the access nodes. Notice that FOG could be moved to another
place in PCMREP by just changing its definition pointer and context link. By lootung at the
structure we see that X is local to the leftmost access node. And, although it cannot be
determined if both Y and Z in ihe ightmost access node are used there bui declared in FOO, it
appears to be the case since they appear in both associated access nodes. That is, they were
probably declared at the top level of FQO and used in the rightmost program segment. To
make sure we would have to look at the attributes of these entries in the symbol table
information in the lower node to see if they were just used there or also declared there.

The Symbol Table

The symbol Uble is as an association list of tymhol.value pairs, where value is itself an
association list of attrihute-.mlnn pairs. Several of these attrihutex, besides being
information holders, also act as "switches". That is, if the aurihuie dees not have a value,
then the switch is false. The list of possible attributes of a symbol are

Data-type, whose value is any element of the set of possible data types for the
particular programming language. This information is mainly used by the spelling
correction mechanism to help find the most likely candidates for a "close" match.

Declared is a boolean flag which states whether the symbol has been declared or not.

Oeeurrenee-dependency-tet, whose value is a set of pointers into the lower structure.
These point to statements that depend on the existence and attributes of the
symbol to maintain the validity of the statement. This is used in conjunction with
the next attribute for quick evaluation of the impact of a change to a declaration
statement.

11 " '• •■ •" ■ ■I « i—i^mw^wpiiwriwinpfii»^w»^iPw^rw"'"ii"«-ii«

THE STRUCTURE FOR HOLDING PROGRAMS

Top of PCMREP

Sue Um aoo088 node

nk

Global aoo088 node

FOO'a oooeee node

Aooeee node within FOO

System
procedures

30 Figure 5. An example of access nodes in PCMREP

. .■.-.. - ^■. , — .i.^^,. - -- -- - - —"-

W[m' m ' " immmmmimmm*i*m*mm wpsppw—"W ■"■ "■' ■ ■ «Pia nmmi m'

THE STRUCTURE FOR HOLDING PROGRAMS

Declaration-pointer points to the statement that caused the initial creation of this
symbol. If this attribute does not have ? value, the declaration was made at a
higher level in the structure.

Context-mode describes the way 'o traverse up the structure to arrive at the access
node which contains the declnrnlion-pointer for this symbol.

Set-flag-dependcncy-set is a set of pointers into the lower structure similar to the
oecurrence-dependency-set, but it contains only pointers to those statements
which assign to or pass as a reference this symbol. If this set is NULL, this fact is
used to determine a possible error condition. Whenever an entry is being added
to the occurrence-depeudenry-set and the set-flag-dependeney-set is NULL, the
PCM informs the programmer of the possible problem that he might be using the
symbol before it was assigned a value. Because of the unknown co^—ol flow of
the actual program execution, the PCM cannot be positive that the sv r.ool did not
receive a valte before its value was used, but it has not encountered any
occurrence of its receiving a value yet.

Parameter-pattern is a pattern description which must match the next item following
the occurrence of the symbol, i. includes the number of parameters and the
data-type of each one. This is used, if found, to make sure the appropriate
number of parameters are passed to a procedure or an array reference.

The values associated with these attributes are set during the semantic phase of the parsing
mechanism. During this phase certain checking is also done. Giving the user a warning about
the possible use of a symbol before it has a value is an example of this. More will be said
about this in the next chapter.

The PCM formalism is the template for generating structures in PCMREP. The PCM methods,
discussed in the next chapter, use both the formalism and the structure as a basis for their
cctions.

31

- ri^

rrv^^^^mmm^m. wmmm^mmimi •■(■■■nai «pininim ■■ . - ~—^—■' ■■'■■■■'■ m n ^^«pmaiiiiii i i.mnpHtw«^ ai i

CHAPTER 5

TIIK SYSTKM ACTIVITIKS

The PCM forrralism and the PCM otructure (PCMREP) have been presented in order to describe
the PCM activities based on them. These activities are presented below in four logical groups:
functions which move the focus of attention within PCMREP; functions which modify PCMRCP;
functions which present, in different formats, program segments which reside in PCMREP; and
functions to parse, check, and correct new program segments for placement in PCMREP. These
activities are described furKtionally, since their invocation is terminal-dependent, i.e., at the
user-interface level, the act of modifying a program segment would be quite different if the
terminal is a graphics terminal with a iight-pen and function box than if it were a teletype. If
a function's activities are based on the PCM formalism, its description wil! be divided into five
categories -- one for each of the PCM formalism's metaconstructs.

Before describing the PCM's activities, some notational considerations are necessary. A
PCMREP node is represented as an italicized uppercase letter from the end of the alphabet
(e.g., X and Y). If a function returns a value, it will be represented as

VALUE <- FUNCTION-NAME (PARAMETERS)

Otherwi:e it will be represented as just

FUNCTIOIM-NAME (PARAMETERS)

Examples reflecting an action in the example session in Section 1.3 will be given.

S.i POSITIONAL FUNCTIONS

These functions are used to move through PCMREP and change the focal point of the PCM
activities. The name of the global definition being manipulated (i.e., the name of function or
procedure currently being edited) is held in the Current Definition cell (CD) and a stack of
pointers into CD's program structure is held in the CIP. The top of CIP is the pointer into the
program structure which is of current focus. The following functions are used to manipulate
CD and CIP, traverse the program structure, and search the program structure.

Funrtions:
SET-CD (symbol)

symbol <- FETCH-CD

These functions, respectively, set and retrieve the CD, i.e., the global entry on which the PCM
activities are currently operating. In the example, whenever a DEFINt command was issued,
the PCM did a SET-CD for the item defined.

32

-

WWiM<i^*wwWWW»w*|W*>Www«iwi>w*«B^^ i mumwi mmmmmmm pwwwii.piinniiiri>i

THE SYSTEM ACTIVITIES

Funrlionx:
PUSH-C1P(X)
X <- POP-CIP
X <- TOP-CIP

boolean <- EMPTY-CIP?

The CIP is a stack of pointers internal to the CD, where the bottom of the stack is the top of
the definition. These functions manipulate the CIP stack.

Fu union;
X <- LOCATE (string search-ischnique)

LOCATE finds the lexical unit specified by tiring in the structure pointed to by TOP-CIP by the
searrh-technique specified (either DEPTH-FIRST or BREADTH-FIRST). It then returns its first
nonsingular father (that is, the first father which has other sons). Usually, the first father of
the found string is the node TERMINAL; therefore LOCATE returns the node which also
contains the found string's siblings. In the example session

FIND BEGIN

caused the following to be executed:

PUSH-CIP (LOCATE ("BEGIN" DEPli'-FIRST))

followed by a short-form printing of the new TOP-CIP.

Fuiirlion«:
X <- FATHER (Y)

X <- FIRST-SON (Y)
X <- LAST-SON (Y)

X <-LEFT-BROTHER (Y)
X <- RIGHT-BROTHER (Y)

These functions provide general relational movements through PCMREP. In the example
session

G02

caused the fol' wing to be executed:

PUSH-CIP (RIGHT-BROTHER (FIRST-SON (TOP-CIP)))

Liu of Potitional Functiont

SET-CD (symbol)
symbol <- FETCH-CD
PUSH-CIP(X)
X <- POP-CIP

33

— ——~- - ■ «i ~ —■— "- —■—.~ ■.^~—.^—-^——,..M f - .-...^—-... J.J..1 —^-..^-^w. J

THE SYSTEM ACTIVITIES

X <- TOP-CIP
X <- LOCATE (string search-technique)
X <- FATHER (Y)
X <- FIRST-SON (V)
X <- LAST-SON (V)
X <- LEFT-BROTHER (Y)
X <- RIGHT-BROTHER (Y)

r>.2 MODIFICATION FUNCTIONS

The above functions were dependent only on PCMREP, but the modification functions base
their operation not only on PCMREP but also on the PCM formalism. Each function operates
differently depending on which metaconstrucf was used for the parse into PCMREP.
Therefore, there are five parts to the description of each function; each part describes the
action of the operation for one metaconstrucf. A so, the modification functions always
preserve the PCMREP structure as if the program represented had been parsed into PCMREP
all at once.

I'unriion:
DELETE (V...V)

DELETE causes the nodes specified (they are the sons of TOP-CIP and any number may be
specified) and the associated semantic information to be removed from PCMREP. But it must
first make sure the deletion will still leave a syntactically correct PCMREP of the particular
programming language. This is accomplished based on the metaconstructs. We will discuss
these on a case-by-case basis.

DKLKTK in an Ordered Sequence:

Deletion can only be accomplished if it is deleting an element of the Ordered Sequence which
is an Alternating Sequence with an EMPTY Alternative. For example, if the rule was

if-statement -> ['IF' boolean-expression 'THEN" statement
{ ['ELSE' statement] | EMPTY }]

then the user could delete the ELSE and its associated statement (i.e., DELETE (56)).
Although this is a simple rule, a severe change in PCMREP may be necessary. It should be
restated here »hat the philosophy of the PCM modification functions is that the PCMREP will
always reflect a structure as if the programmer had had his whole program parsed at one
time. Therefore, if the ELSE clause being delete'! Is a member of an IF statement which is the
THEN clause of another IF statement, then the following restructuring takes place (using
square brackets as metaconstructs to show association):

[IF A THEN [IF B THEN C ELSE D] ELSE E]

becones

34

THE SYSTEM ACTIVITIES

That is, if

[IF A T; JEN [IF B THEN C ELSE E 1]

FATHER (TOP-CIP)

was produced by the same metaconstrucf rule (e.g., if-stafement) as seen in Figure 6, then
the deletion of ELSE.2 and statement.4 * must cause a restructuring to match what PCMREP
would be if the user had input if-statement.l directly. Figure 7 (using the same subscripts as
Figure 6), shows that PCMREP. The ELSE.l and statement.2 were "pushed down" into if-
statement.2 DELETE will detect this, perform the restructuring, and inform the user of it.

DELETE in nn fllternnling Scqueurr:

To maintain a legitimate PCMREP, the deletion must specify a pair of adjacent nodes, that is, a
node for f.l and one for f.2. These can be specified in either order. For example, a legitimate
PCMREP for the production rule

expr -> < identifier { V | '-, t V | '/') >

can be seen in Figure 8. The PCM would accept as legitimate either DELETE (12) or
DELETE (23), but not DELETE (3). If there is only one item (i.e., an instance of f.l), then
the deletion is legitimate only if the Alternating Sequence is one of the forms in an Alternative
Set which contains an EMPTY alternative.

DELETE in a Ilrackciod Scqucnci':

A Bracketed Sequence is made up of a form surrounded by start and finish markers (the
brackets) such as

[) 'BEGIN' < statement 'END' (]

The inner form (i.e., the second element of the Bracketed Sequence — in this case it is
< statement ';' >) is treated a. a part of the Bracketed Sequence, as was seen in the example
session when the PCM printed

begin «STACKINDEX ... 1» ; «STACK ... ITEM» end

For deleting any dement of the inner form, the rule for that metaconstrucf applies. For
example, DELETE (23) would be a legitimate operation removing the first statement and the
semicolon of the Alternating Sequence. If the inner form was an Ordered Sequence, then the
"DELETE it an Ordered Sequence" rule applies. The deletion of the "brackets" is usually not
allowid. For example, removing the parentheses surrounding a parameter list is not allowed.
There are two exceptions.

The subscripting notation is used in the figures for clarity.

35

--.

THE SYSTEM ACTIVITIES

if-itatwnant. 1

(TERMINAL) expression.) (TERMINAL^ statement. 1 (TERMINAI) ftafainent.2

THEN. I if-i»at«ment.2 ELSEJ

(TERMINAL) expression.? QERMINAM ifatafflent.3 (TERMINAL^ statement.4

T
IF.2 THEN.2 ELSE.2

Figure 6. Embedded ordered sequences of the sane type.

if-$totement.l

(TERMINAL) expression. 1 (TERMINAL) statement.J I EMPTY I

T 1
THEN.1 if-stotement.2

^TERMINAL) expression.2 ^TERMINAL^ statement.3 (TERMINAL^ statement.2

IF.2 THEN.2 ELSE.I

Figure 7. Embedded ordered sequences of the same type with an EMPTY alternative.

36

MMIMIM«M«>^tM—it«—fcl i ■ M -^ ■ - -- ■ - ...^—^-

THE SYSTEM ACTIVITIES

expr

identifier (TERMINAU identifier (TERMINAL) identifier

1 1 i i i
/

Figure 8. A legitimate PCMREP for expr -> < identifier |,+' I'-' I '*' {'/*[>

First, in cases such as arithmetic expressions, where a Bracketed Sequence is used to describe
subexpressions, it should be possible to delete parentheses. This is accomplished by the
following check of PCMREP. If the FATHER of the Bracketed Sequence is the same as the inner
form, then they can be removed and the inner form is raised, removing the inner form. That
is, if this was a production rule

arith-expression ->
< { identifier | [) T arith-expression T (] }

{ V |'-' | V | 7' IT } >

then a possible PCMREP can be seen in Figure 9. The user could then legitimately cause a
DELETE (3 5) to be issued which would cause the structure to change as seen in Figure 10.

37

■ - -■ MM^feiMiMMtfi

THE SYSTEM ACTIVITIES

orith-expression

//l\
dentlfier (TERMINAL) (TERMINAL) arith-expression (TERMINAL^

i i i /i\T
(identifier (TERMINAL) identifier \

1 1 1

38

Figure 9. A legitimate PCMREP for

orith-expression ->< | identifier I [) '(' orith-expression ')' (] |

|'+' I '-' I '*' | '/' | 'f |>

_ . . m i l ■■■ - ■ ■ - -- - ■■ ■- - • ■■■- - -

'-

'

THE SYSTEM ACTIVITIES

arifh-expression

identifier ^TERMIN Al) identifier (^TERMIN Al) identifi

i i I T 1
Figure 10. Modified PCMRF.P from figure 9.

The second exception deals with cases such as BEGIN blocks which are the statement following
the ELSE in an IF statement. Then deleting the BEGIN-END pair should be allowed. This is
accomplished by checking several criteria. First, the inner form must be an Alternating
Sequence whose first form is the same type as the Bracketed Sequence. Second, the
grandfather must be the same Bracketed Sequence. This can be seen in Figurt 11 where
statements and statemer.» 4 are both begin blocks. If these criteria are met, then tne deletion
is legitimate and the following operations take place. Replace the Bracketed Sequence with
the first set of Alternating Sequence (i.e., the first f.l and f.2). Insert the remainder of the
Alternating Sequence after the grandfather. This can be seen in Figure 12.

DELETE in a Repealing Sequence:

If the form to be deleted is another metaconstruct, then the deletion rule for that
metaconstruct is applied. If not, then any deletion is legitimate unless it is deleting the last
entry. In this case, the Repeating Sequence must be an item in an Alternative Set with an
EMPTY alternative.

39

■

THE SYSTEM ACTIVITIES

statement. 1

^TERMINAL) expression (TERMINAL) statement 4
^ , ^

WHILE

(^TERMINAL)

BEGIN
T
END

40

Figure 11.

■ -- - ■ -■ ■ - .Aua^HaMMMMMaaMaiiBtaaMMaM^ktfi^ ^a^^liMi^^MaiMMMMIMMHHMaM

THE SYSTEM ACTIVITIES

3
at

5

CM

3

\u
41

^. - - --

THE SYSTEM ACTIVITIES

Function:
INSERT-BEFORE (string \')

The pr.nc.pal funct.on of INSERT-BEFORE, like several other functions which follow, is to build
the »PPropnate production rule to |iv, to the parsing mechanism. That is. it must decide what
are he valid structures that can be ins jrfed before the specified node. As with DELETE the
funcfon of INSERT-BEFORE is dependent on the current parse node (CIP).

INSKKT-HKtOHE in an Ordrrrd Sequence:

feoZ/ZT l
eXC*p,i0n' a" Ordered Sequence is a quired list of forms, insertion is. in

KTllL^L^i, T^' ,h'S e)<COP,i0n S,VeS ,he PCM 0ne ca5e t0 co"sider- That case is
when the node be ore the specfied node is EMPTY. Th.s means the node was created from an
Alternat.ve Set w.th an EMPTY alternat.ve. An example or tNs can be found in programming
languages wh.ch can have a label before a statement. Then the rule for statement may be the

statement -> [{ [label V] | EMPTY }
{ assign-statement | if-statement ;...}]

« J^oUT^ Se, iS 0f
1

,enu8,h ,W0' ,hen ,he first ,0rrn is S,ven ,0 ,he Parsing mechanism, e.g.. trom the above example, the parser would be given

goal -> [label V]

Otherwise, the Alternative Set ,s modified by removmg the EMPTY alternative and then given
to the parser. B

INSKKT-BSHMK in an AUcrnatirc Set:

This is never valid, since there is only ons form which was selected. The user i«, probably in
he wrong locationm PCMREP, so the input string is saved and the user is askec if he would

l Ke to change the CIP and redo the command. The use. can abort or change the CIP.

INSKHT-BKrORK in an /Mternatimr Sequence:

An Alternating Sequence (< f.I f.2 >) is a cequence of forms alternating between f 1 and f 2
and ending with an f.I. The PCM user can insert before either an f.I or f.2. The function
builds two different ruies based on whether it is before an f.I or f.2 to maintain the correct
alternations. If the insertion is before an f.I. then the parsing mechanism is started on

goal -> [* [f.I f.2 J *]

If it is before an f.2», then the production is

The goal is one or more occurrences of the Ordered Sequence f.I and f.2.

42

 „^
• ■ " ■ - - - —■■

THE SYSTEM ACTIVITIES

goat -> [* [f.2 f 1] *]

This causes the appropriate sequencing for the insertion.

INSKRT-RKFORK in a Hrmnketitd S*q****>i

In a Bracketed Sequence ([) t.l f.l t.2 (]), it is not valid to insert before t.l. If the insertion
is before t.2, then this is converted into INSERT-AFTER of the inner form (f.l). The
appropriate action is taken based on the structure of f.l. This is also true for an insertion
before f.l.

INSKRT-BKFOKK in a Rcpfntinn Sefuemw:

This is the easiest to handle, since a Repeating Sequence is only a repetition of one form. The
same rule (i.e., [« f.l *] > is given to the parsin-» mechanism.

Funclion:
INSERT-AFTER { string X)

INSERT-AFTER is similar to INSERT-BEFORE. In most cases its functions are identical to
INSERT-BEFORE except that it performs its validation checks for what can come after node X
rather than before it.

Funrtion:
REPLACE (string X)

REPLACE is relatively simple, since whatever new input is to replace the old node must be of
the same type (i.e., the saie nonterminal) as that node. The parser is gven whatever rule or
metaconstruct caused the initial node to be generated. Notice that the node must be either a
production rule or a metaconstruct. Terminals with no alternatives are not allowed to be
replaced. For example, if the rule was

if-statement -> ['IF' boolean-expression 'THEN' statement
{ ['ELSE' statement] | EMPTY }]

then the PCM would accept

REPLACE ("A < BH 2)

but not a command dealing with node 1.

Function:
EMBED (string X)

EMBED is similar to REPLACE in that the new partial PCMREP must be of the same type as the
old node. The parsing mechanism is started with the same nonterminal after replacing the
specified character with a flag the parser is aware of and a pointer to that node in PCMREP.

43

_^-_a>a^>>__

THE SYSTEM ACTIVITIES

When the parser reads the flag it checks to see if the nontermmal in PCMREP is the same as

PAWD 1 uJ6 ParSed, the P0rSer Sk,ps *h$t ac,ion and adds that node to the partial rt-MKtr it is building.

h'uurliou:
EXTRACT (X')

EK™iCuT iS/.hue 0ppos,,e function of EMBED. It is designed to remove structure. Node X
shoad bf 0f '^."^ ,ype non{erminal as the one pointed to by the CIP. If so, the function
deietes from PCMREP all the other nodes and makes node X the new CIP Notice that
recursion in the formalism is implied in both EMBED and EXTRACT.

Function:
DEFINE (string)

This function is used to define a new global symbol and its value (usually a program segment).
t starts the parser on the initial nonterminal, then sets the CD and CIP pointers to the new

detimtion.

lAtt of Modifirntinn Vunnions

DELETE (\...V)
INSERT-BEFORE (string X)
INSERT-AFTER (string \)
REPLACE (string X)
EMBED (string \')
EXTRACT < A')
DEFINE (string)

5..? PRESENTATION FUNCTIONS

The presentation functions are provided to give the PCM user information about his current
s a e of program development. This information is either program information (unparsing) or
status information such as undefined symbols.

Status information is based on two functions which operate on the access nodes where the
information is stored. They are

Funrtioim:
list-of-symbols <- FETCH-SYMBOLS (access-node)
value <- RETRIEVE (access-node symbol attribute)

PFTD^V/^8»01"5 r?!UrnS a '^ *hich COntains each 5ymbo1 in ,he access "Ode specified.
RETRIEVE returns the value of the attribute specified for that particular symbol. Several

UNKFINln0. h! ^ Tu S ^ H^ "^ be Seen in the example session- For **™**' UIMUtFINED? has the following definitions:

FOREACH SYMBOL IN FETCH-SYMBOLS (GLOBAL) DO

44

 — -•-- - - ■■ ■ ML* AMMnMAyM

THE SYSTEM ACTIVITIES

IF RETRIEVE (GLOBAL SYMBOL DECLARED) - NO
THEN PRINT (

RETRIEVE (GLOBAL SYMBOL DATA-TYPE)
SYMBOL))

This example should be sufficient for the re;ider to extrapolate their usage in other status
functions.

As was seen in the example session in Chapter 1 there are two forms of program
presentation; long and short. The long form presents 'ne entire program pointed to by the
CIP in a structured form (i.e., not a linear string of lexemes). The short form also presents the
program pointed to by the CIP but in an abbreviated form showing the str^-.ture but not the
entire program. Both unparse PCMREP.

Function:
UNPARSE-LONG (A')

This function processes the specified part of PCMREP outputting, in structured form, the
lexical units. The methods for outputting them in structured form is again based on the
melaconstructs of the formalism. These methods recursively call UNPARSE-LONG on some of
the metaconstruct's elements.

Before describing these methods, some functions used by UNPARSE-LONG and some global
variables will be discussed. UNPARSE-LONG needs to know the line length (LL), the current
left margin (CLM), the current indentation (i.e., where text starts on a line) (CD, the remain text
area on a line (REM), and the number of spaces for a tab stop (TAB). NEWLINE, an affiliated
function, prints a carriage return and sets CLM to the value of Cl. OUTPUT prints the lexical
unit, increments CLM and decrements REM.

If this is the first time this structure has ever been unparsf.d in long form, then a pass through
it must be made leaving information at each nonterminal. Starting at the leaf nodes the
information needed is the total number of characters for all lexical units below it, the number
of lexemes, and a flag associated with this information s set to VALID. After this is done, the
function LENGTH (X), using this information, is used by UNPARSE-LONG to give the length in
characters of the structure if printed on one line (i.e., total characters + (lexical units - 1)).

After the modification is made, each modification function (see Section 5.2) ascends PCMREP,
changing the associated flags to NOTVALID. The next time UNPARSE-LONG is initiated, it
checks this flag and descends PCMREP, only changing the parts that are marked NOTVALID by
correcting the information and changing the flag.

The basic approach of UNPARSE-LONG's operation on node X is

1. If X is a leaf node, then PRINT (X) and return.

2. If LENGTH (X) is less than REM, then PRINT all the lexical units in X separated
by spaces and return.

Apply the appropriate method described below to
metaconstruct is associated with X and then return.

X based on which

45

■ - --

THE SYSTEM ACTIVITIES

UNPARSE-I.ONC on an /lltcrnating Snriurncc:

Using the notation < f.l f.2 >, the approach is

1- If f-2 is a language constant, then for each f.l f.2 pair UNPARSE-LOAiG (f.l),
PRINT (f.2), and then NEWLINE. Finally return. This is for the cases such as
< statement V >■

2. Otherwise, for each f.l and f.2 see if LENGTH(f) is less than REM. If it it,, then
UNPARSE-LONG(f). If not, increase Cl by the value of TAB then NEWLiNE and
UNPARSE-LONG(f). Finally reset Cl and return.

UNP/\RSK-l.ONG on a Hracketcd Seqvonco:

Using the notation [) T.l F.l T.2 (] the approach is

1. If t.l is an alphabetic language constant, then PRINT (t.l), increase Cl by /AB,
NEWLINE, UNPARSE-LONG(f.l), decrease Cl by TAB, NEWLINE, PRINT(t.2), and
return. This is for cases such as

[) 'BEGIN' statement V > 'END* (]

and would cause the following output:

BEGIN
statement. 1 \
statement.2 ;

statement.n
END

Otherwise PRINT{ t.l), PRINT(space), increase Cl by LENGTH(t.l)+l, UNPARSE-
LONG(f.2), reset Cl, PRINT(t.2). NEWLINE, and finally return. This would handle
such cases as

[) '(' < parameter V > T (]

and would cause the following output:

F00 (parameter. 1 ,
parameter.2 ,

parameter.n)

46

- — - - ■ -— ■ ■ ■■ -■ ■— ■ "•

THE SYSTEM ACTIVITIES

UNPARSK-LONC on a Rapcatiiiß Srqurncr:

A Repeating Sequence is just a indefinite sequence of forms, therefore for each vorm
UNPARSE-LONG(f) and NEWLINE. Finally return.

UNPARSE-WNG on an Ordered Sequence:

An Ordered Sequence uses the same approach as part 2 of the approach for Alternating
Sequences.

These methods produce a structured output which reflects the structure of the programming
language described in the 'ormalism.

Function:
UNPARSE-SHORT (X)

This short form of program presentation is used to show the PCM user the structure of his
program quickly and concisely. The approach is to output each son of X in order. If the son
is a single lexical unit, then output it. For larger sons (i.e., more than one lexical unit), the first
and last lexical units are printed with the expert-supplied ..lart, middle, and finish characters.
An exiimple was seen in the example session when the PCM output

begin « STACKINDEX... 1 » j « STACK...ITEM » end

Using different approaches, both program presentation functions reflect to the PCM u-er the
structure of his program.

List of Presentation Function»

list-of-symbds <- FETCH-SYMBOLS (access-node)
value <- RETRIEVE (access-node symbol attribute)
UNPARSE-LONG (X)
UNPARSE-SHORT (X)

S.4 THE PARSING MECHANISM

The parsing mechanism is a two-stage process which maps a character string into PCMREP.
The first stage is what is normally thought of as the parse stage. The second stage is the
semantic evaluation and checking phase. Only after both stages have been executed is the
PCM satisfied in the validity of the new PCMREP. Each s^age will be discussed separately.

The Parting Stage

Function:
partial-PCMREP <- PARSE (string goal)

47

■ -

F»——»^—■ ' ■■'«'•i i i JI i.igiui^n«^an«pmpiiii^HP>-w-i|imp

THE SYSTEM ACTIVITIES

Syntax-directed parsing techniques are so widely found in the literature that it i. nM

s^',4Vhavh
e

oiirr;pXcoH;rcen' to^'ec,o"{™',he l•" 'o- ^•' «■» -«™.

The correclor is initialed when the parser can no lonSer cnlinge. Notice that this mav not h.

... ; EOF THEN ...

When the parser canno continue at the THEN, the corrector is invoked Presumabk th. 'Wf

««rn. ^'r,a"IF a,'er ,he srmicota' -'ch '■""« -»p-eT^tc'^p^

... I IF EOF THEN X := Y; Y := Z END ELSE ...

Thl're ^a W0«^ 'I056' f S0"e PreV,0US BEGIN' ,he err0r is «countered at the ELSE

Ä8Ä ^r^:^-e^'t^LS^ rÄti-r?^ ^
correcor has developed d.llerent heur.stics to deterrr.me hof f« o b«k ^ h-l^

:r;esc:reda:do,hdesu,is"",o ^ "y ,o ^ ,h° -— '^"ü'AX «.«r

l^^dVo^Äp'!; ,he ^^^ ,5 'n;.nCO
u

mple,e PCMREP W,th0ut access -d-- ^ese -re aaaea 10 the PCMREP during the semantic checking stage Bui first this narH«! PPMRPD

PCMREP. For example, when INSERT-BEFORE in an Alternating Sequence gave the parser

goal -> [* [f.l f.2] *]

Obviously a Repeating Sequence is not the desired end result INqFRT BFFnpp .^n »u

chec^'taVes oUr 5 Seq,Je"Ce- 0nCe ,he ",Se"i0n is «"mpli.h.d. the sLantic

which ISZ'PLIZJT ' b0,,°m-UP SLR(I, •'"'•«■««'«'- P""' •« Sloped

48

THE SYSTEM ACTIVITIES

TA« Semantic Phate

Function:
SEMANTICS (X)

As was stated in Chapter 3, the expert also supplies some semantic information in his language
description. This information is enclosed in parentheses and can follow any metaconstruct. It
is then associated with that metaconstruc' The semantic checker is started at the new node
in PCMREP and, processing top-down, scans the new PCMREP segment. Upon encountering
one of these pieces of semantic information, the semantic checker takes appropriate action.
These actions will be discussed as each type is presented.

Semantic Attribute:
(NEW ACCESS NODE)

This causes a new access node» to be added to PCMREP above the metaconstruct and linked
up to its parent access node. An ALGOL language description wou'd contain the following:

[) 'BEGIN' < statement ';' > 'END' (] (NEW ACCESS NODE)

This would cause a new empty access node to be inserted just above the block in PCMREP.
Now symbols referenced below will use this access node.

New symbols are inserted into this access node by

Semantic Attribute:
(DECLARE symbol attribute:value ... attribute:value)

Whenever this is encountered, the new symbol is inserted into the first parent access node
encountered and the attributes for that symbol are added. For practical purposes there must
exist a binding mechanism to retrieve information from PCMREP. This is accomplished by a
FQREACH function whose first parameter is the nonterminal which represents a lexical unit.
Each lexical unit is taken, one at a time, and replaces the nonterminal in the semantic
statement, which was the second parameter to FOREACH. For example, a SAIL declaration
would be

decl-stmt -> [type < identifier ',' >]
(FOREACH identifier (DECLARE identifier data-type:type))

DECLARE also updates several attributes automatically (i.e., drclnrrd, declaration-pointtr, and
rontcxt-modn). Also notice that type was automatically bound to its lexical value.

Semantic Attribute:
(SET symbol)

This causes s<;t-flag-dci)cndcncy-sct to be updateci to contain this node. This later is used in
determining the possibility of a symbol being used before it has a value. It may appear in the
formalism as

• It is assumed that the reader is familiar with access nodes described in Chapter fl.

49

f

 — ■■ ■■■ - — -— - -

'•■ ■' ■ 11^ II I ~VI. wmmmmmmm

THr SYSTEM ACTIVITIES

assign-statement -> [identifier ':=' expression]
(SET identifier)

or possibly

formal-parameter-list -> { [type < identifier ',' >] |
['REFERENCE' type identifier ',' >]

(FOREACH identifier (SET identifier)) }

Semantic Attribute:
(USED symbol)

This causes the orcurrrnrr-drpondrury-sn to be updated and a check made to see if it has
been set. If not, a warning is given lo the user to that effect.

It is possible that, for either SET or USED, the symbol is not in the current access node. The
semantic checker considers this an error and invokes the semantic corrector. The semantic
corrector first searches up PCMREP looking for an access node containing the symbol. If it
finds one, the access nodes are linked and the corrector returns. If it does not find the
symbol, it then tries to correct a presumed spelling or typing error by seeing if it is a close
match* to any symbols in its access node path. If it finds one it asks the user to confirm this
correction. If no ciose match was found, it asks the user if the symbol is global. At (his ooint
the user can either confirm that it is or fall into a lower edit, create the symbol, and upon
returning the corrector confirms that there is indeed a new symbol in the access node path.

Semantic Attribute:
{ PARAMETER symbol data-type)

This causes occurrrnrf-pnitcnt to change by appending the data-type specified. A FOREACH
is used to iterate through the formal parameter list. Whenever that symbol is then used in a
SET or USED semantic statement, a check is made nn the number of parameters which follow it
in PCMREP. Of course, for languages which allow a variable number of parameters on function
calls, this feature cannot be used.

This ends the discussion of the semantic checker. However, since structure may be removed
from PCMREP, so must the semantic information be removed. This is accomplished by

Fu union:
UNDO-SEMANTICS (V)

which removes all semantics added to PCMREP for the node and all of its descendants. It
traverses the tree in the opposite order of the semantic checker and removes all the
information inserted into the PCMREP by ihe semantic checker. There are a few cases which
might cause possible errors. These cases arc caught by UNDO-SEMANTICS and are as follows:

• Closeness is measured by the number of disagreements between the two words
being compared divided by the length of the longest word. This gives a percentage of
"agreement". Currently, if the agreement is greater than 70 per cent, the words match.

50

__

iiiimniaji^mnvnt^wnm

THE SYSTEM ACTIVITIES

If the »ct-flna-dc/iCHdrnry-fltta becomes empty, a check is made to see if the
oeeurrcnce-dep«nieney-sct is also empty. If net, then a warning is made to the
programmer about the symbol's possible use before it received a value.

If the derlaration-poiuicr is deleted and either the set or used sets are not
empty, then a search is made up the access nodes for the same symbol in a
higher context. If found, the access node information is changed to link up to the
higher symbol. Otherwise, the error is presented to the user for his rectification.

List of Parting Function»

partial-PCMREP <- PARSE (string goal)
SEMANTICS (X)
UNDO-SEMANTICS (X)

S.S THE IMPLKMENT/iriON

A prototype version of PCM has been implemented in INTERLISP* on a PDP-10 TENEX.
PCMREP was implemented as a n-ary doubly-linked list structure for ease of backward and
upward movement. The symbol tables within the access nodes had the form of LISP's
property lists (although they were not associated with any LISP atoms, as real property lists
are). The attributes for the symbols were similarly implemented, and both were accessed by
the functions PUTL and GET.

The parser was implemented by writing five functions which correspond to the five
metaconstructs of the PCM formalism, a function to scan the input and return lexemes»», and a
predicate function to confirm that the next lexeme in the input strinr, was a particular
language constant, such as semicolon. RETFRQMs were used to back up the parsing process.

The other functions described in this chapter were implemented as described, with the
exception that some of the simple straightforward algorithms for some cases, not needed for
the example session in Chanter 1, were left out of this prototype implementation.

The definition of PASCAL was hand-translated from the formalism to calls on the functions
which reflected the metaconstructs, and the language constants (enclosed in quotes in the
formalism) were converted to calls on the predicate function that would return T if the
constant matched the next lexeme in the input string.

The system ran interpretively and obviously was not an efficient implementation. But it was
sufficient to show the feasibility of such a system for helpful aid in the creation and
modification of syntactically correct program.

• In this discussion, it is assumed the reader is familiar with LISP.

•• The scanner recognized identifiers, reserved woros, numbers, operators, and
constants by reading LISP atoms through a special readtable.

51

f

._-.

'
frmm wmmm <~m 1,111 n «Il11

THE SYSTEM ACTIVITIES

The PCM formalism, PCMREP. and the PCM activities provide the fac.l.ties to achieve the
stjctured creation and modification of programs in many programming languaaes Chapter 6

a" o oure
a:rthhis ^ w,,h.,he rea5ons ,or a LIBNI ^O^ ,O ,he ^" ä * also presents the author s conclusions and some suggestions for future work.

52

L - — - ■ ^—^ -

'«■WWWPWIHWIIII i mmmmtmm^MMm

CHAPTER 6

SUUMARY AND CONCLUSIONS

6.1 ENVIRONMENTS

Several well-known computer scientists have argued along with the author (see Section 1.1)
that the next big advancement in the area of computer software production is monolingual
programming environments with sophisticated facilities for program development. These
facilities should contain and exhibit knowledge about their tasks which was previously
maintained in the programmer's head. This allows the user to concentrate more on the
programming problem rather than the programming effort and should allow an increase in the
complexity of the problem domains. This increase is the main reason for programming
environments with sophisticated facilities. Although it is difficult to generalize at this level of
discussion, an advanced facility guides the user in his performance of the task while, without
interfering with his performance, it prevents him from making errors.

Obviously, this is an immense task to perform for all programming languages. The author's
solution to this dilemma is to make as many facilities as possible language-independent. To
accomplish this, the "knowledgeable" t?sks performed by a facility must be conceptualized in a
general way into the realm of programming languages rather than one particular language.
Then by some form of language description appi-opnate to the task, the sys.em should tailor
its conceptualization to a particular programming language. This approach the author has
labelled LIBNi; it stands for Language-Independent But Not Ignorant.

Programming environments should be ever expanding their facilities as new techniques are
designed such as program verification (which possibly will be a viable tool in a few years).
This expansion is exhibited in INTERLISP, which is a very sophisticated programming
environment for the programming language LISP and was the initial inspiration for the author's
research. Unfortunately, it is not LIBNI-based. For a LIBNI programming environment ever to
appear, LIBNI facilities must first be designed and shown to be possible. This was the impetus
for this report.

6.2 PROCR/IM CONSTRUCTION /INI) MODIFICATION: /I SUMMARY

After extensive investigation n LiBNI programming environments as a whole, the author
selected the specialized area jf program construction and modification, for several reasons.

e This area is the most neglected and historically unrecognized as a problem area in
computer science.

53

^^mmamtmmm

mmm ■■ ■■' wmm !«• I. '™~~

SUMMARY AND CONCLUSIONS

• The facility is capable of being used without the need of a programming
environment. That is, it could replace the normal text editor now being u^ed to
construct programs in the average interactive "general-purpose" computing
environment and greatly improve the phase of program construction and
modification.

• it is the one component of a programming environment that, with current
knowledge, could be designed in a language-independent but not ignorant manner.
That is, the knowledge needed for program construction and modification can be
abs''acted.

• During the time the author spent programming extensively while a professional
programmer, he found the errors encountered during later phases which could
have been prevented by a good facility for this phase of program development to
be the most irritating of his programming activity.

The Coal

The goal was to carefully design an integrated LIBNI facility for program "editing" It should
tacilitate program construction by maintaining correct syntax and certain semantic
consistencies (i.e., error prevention) while still allowing the user "free-form" program input It
should be able to present program structure in several forms; it should also be able to
proviüc? information concerning the use of symbols such as where and when they are defined
and used. And it should react "intelligently" by giving warnings about possible
inconsistencies in the use of symbols and by trying to correct simple input errors.

/iuaining the Coal

To accomplish this in a L1BN1 manner, the facility needs a description of a particular
programming language's syntax .ind some of its semantics related to symbols. It needs an
internal representation of this information for particular programs. And it must tailor its
operations based on this language description. That is, it needs three items: a language
description, a representation for holding programs, and "intelligent" and adaptable operations
for program manipulation.

Since these pieces are interrelated, it was necessary to design the three items together
implement a prototype to test specific parts, review the results, anc' then revise the design
when necessary. e

Thr Kemliant Design

An overview of the formalism for describing programming languages, the internal
representation of programs in these languages, and the functions for manipulating and
presenting these programs 'ollows along with a system overview.

The author rejected BNF because its limited metaconstructs require the definition of an

54

^*w^*mm*v.

SUMMARY AND CONCLUSIONS

excessive number of nontermmak and distort «-.ome lansuage constructs such as parameter
lists.® A new formalism was designed similar to BIMF but with an expanded sot of
metaconstructs which more o rectly reflect the syntax of nigh-level programming languages as
it is conceptualized and manipulated by the programmer. There are five metaconstructs, which
informally are

1. An ordered sequence of mandatory forms.

2. A set of alternative forms with a special form to indicate that it is not necessary
to ma^h any of the alternatives.

3. An ordered sequence of three forms where the first and last forms are language
constants. This is useful for describing such items as block structure and
parameter lists.

4. An indefinite number of alternations of two forms with the first form specified as
being both the first a.id last item.

5. An indefinite number of repetitions of a single form.

The PCM®* bases all rf its activities on these metaconstructs, from parsing to the decision of
whether a deletion of some part of a program will still maintain a legitimcte program syntax.

A data base for holding the internal representation of programs (PCMREP) was also designed.
It is a highly augmented n-ary tree with special nodes which contain extensive information
concerning symbols which occur below it. They appear m the structure whenever a new
naming context is present such as procedures or new blocks.

Methods were then designed for constructing and modifying programs for languages described
in the formalism. These methods fall into four categories and are presented in Chapter 5 as
sets of basic functions. A brief overview of the four categories follows.

1. PCMREP is designed to hold many program segments (e.g., procedures, functions,
and global data definitions). A set of functions is used to 'ocus attention on any
of these that the programmer finds of int- -est and then within that definition
maneuver to more local points.

2. A set of modification functions (deleting, inserting, replacing, embedding,
extracting, and defining) was designed whose operations are based totally on the
metaconstructs. That is, each function makes all decisions -- such as the
legitimacy of a deletion -- based on which metaconstruct was used to generate
that particular segment. Their emphasis is on error prevention (i.e., do not let the
user create incorrect syntax) and performing any necessary restructuring of

• See Chapter 3 for an expanded discussion of this issue.

«•The facility described in this report is called the Program Constructor and
Modifier and is abbreviated PCM.

55

"'" -. .., .w., ., i. i Mmm^^mm

SUMMARY AND CONCLUSIONS

PCMREP. For example, in ALGOL, if the programmer wants to delete the ELSE
clause of an IF statement, that certainly is legitimate. But if that IF statement
were the THEN part of another IF statement, then its ELSE clause must become
the ELSE clause of the inner IF statement.« That is, (using square brackets as
metasymbols to show association)

[IF A THEN [IF B THEN C ELSE 0] ELSE E];

becomes

[IF A THEN [IF B THEN C ELSE E]] ;

This restructuring is accomplished by the PCM. The algorithm for oetecting and
then rectifying this problem is described totally in terms of the formalism and its
associated metaconstructs. All the modification functions are described only in
terms of the formalism.

Functions to present information and programs to the programmer. The
information functions present attributes the PCM knows about the programmer's
symbols. This information is given to the user either at his behest — e.g., by
asking for a list of undefined symbols — or by the PCM when it discovers an
inconsistency -- e.g., a warning that a symbol's value possibly is being used
before the symbol was assigned a value. There are two functions for presenting
program segments to the programmer. The first is a complete printout of the
segment in a structured manner. The structuring of the output is decided on the
basis of the metaconstructs. The second type of program presentation presents a
short form of the program segment. It is designed to show the structure and not
the entire program. For example:

BEGIN «F00 ... COUNT» | «WHILE ... 1.314» END

shows a block with two statements. Enclosed in "«" and "»" are the first and
last lexical units of those statements.

There are actually a few functions which deal with the parsing mechanism. The
first function is what is generally considered parsing. It produces a partial
PCMREP with the special symbol nodes. It is started by the modification functions
which give it the goal and the input string. It should be noted here that the
modification functions sometimes have to generate their own goals which are not
part of the programming language. Consider the alternating sequence.

/jnrrn , /mrm , pnrm , /mnn

• The PCM philosophy concerning modifications to PCMREP is that the structure should
be identical to the PCMREP if the programmer had typed in the entire program directlyj thus
this change in the association of the ELSE clause.

56

- -

SUMMARY AND CONCLUSIONS

If the programmer requests to insert before a parm, then a goai must be
generated for a repeating sequence of an ordered sequence of parm , . Similarly,
if he wants to insert before a , , then it should be , pnrm.» When the parse
returns the partial PCMREP, the modification functions adds it appropriately to the
total PCMREP. Then the semantic checker is initiated; it adds the access nodes if
necessary and iiore-o information concerning attributes of symbols. In this phase
are detected parameter passing inconsistencies, undefined symbols, and possible
use of symbols before the/ have values. This mechanism, driven by the
modification functions, alleviates much "reparsing." Since structure can be
removed, there is also a function which removes the information added to PCMREP
by ths semantic checker. All three of these functions have correctors in case of
an error or inconsistency. These correctors communicate with the user to either
confirm a correction or ask hii advice about the error if it cannot rectify the
situation itself.

This facility, the Program Constructor and Modifier described above, was designed to allow the
programmer the freedom of free-form input but maintain the facility to continue trying to
prevent errors. If this is not achieved, correctors take over to try to correct the problem and
negotiate with the user about its resolution.

The PCM system is a two-stage process. For each programming language a language expert is
required to describe that language in the PCM formalism and provide a set of command
macros. Once this is accomplished, the PCM is available to programmers who program in that
language. Figure 13 shows a block diagram of the PCM system.^® The dashed lines represent
data access with double-headed arrows showing read-write access.

6J CONCLUSIONS

The initial goal of this research has been achieved — the design of a sophisticated but
language-independent facility for program construction and modification which adapts itself on
the basis of a language description. Thai is, the syntactic and semantic concepts needed for
this process were generalized and then adaptively applied via the language description.

It does prevent syntax errors «/d aids in preventing certa^ semantic errors. It has good
presentation functions for both prosram segments and relational information concerning
symbols. It operates "intelligently" and helps the user in error correction when necessary. All
Of these combine to make the PCM a sophisticated tool for program construction and
modification.

Although initially inspired to develop a taciliiy for an advanced programming environment, the

♦ Using regular expression notation, an alterr ating sequence is /)arm(, parm)* and the
repeating ordered sequence is (. parm)* or (pnrm ,)♦. This is what the insert function must
generate.

•• The repeated use of the block USER refers to the same programmer and is only
repeated in the diagram for convenience.

57

mf- \iL\mt\mmm mmm*~mm-^m mr<wmirm*mmmmw~~wr*~~* i i mim'***'mni*rrmr*1Bfimnv**m^w™*'**~*l~ i" ■ ' > • inmm**" i

SUMMARY AND CONCLUSIONS

Positional
Functions

Usei

T
User interface

58

Figure 13. System organization

- --- - ■iMKHaMMa«

«■■ im* — WJIIJIII" P II

SUMMARY AND CONCLUSIONS

PCM is a useful facility in its own right. When a programmer constructs a program via PCM,
he has a syntactically correct program and some simple semantics have been already checked
(e.g., undeclared identifiers). This will prevent extraneous compilations to find these errors,
freeing the programmer to find his logical errors.«'

To discuss the range of language?, applicable to PCM, it must first be divided into syntactic and
semar'ic portions. Syntactically, the PCM formalism is sufficient to describe all reasonable
programming languages with two exceptions. PCM does not consider the problem of
extensible languages which allow a user to define now syntactic constructs; although it would
conceivably be possible to add a language-dependent facility to add new pieces of PCM
formulism as the new description was parsed — similar to the one the compiler for that
language uses. The second exception is context-dependent constructs such as PL/l's labelled
blocks which allow a. END to "closeoff" several nested BEGINs. Semant.cally, PCM is oriented
towards high-level pro, amming languages with scoped and declared variables. The semantic
portion of PCM would be basically inoperative on programming languages without this feature
— although the syntactic port.on would still operate. But all. of the above fall into the
category of lack of redundancy of syntactic constructs which directly reflect semantic ones. In
I paper discussing the impact of language design on the production of reliable software, this
lack of redundancy was considered harmful and was argued against — backed up by empirical
data — for future language designs (see [Gannon, et al. 75]).

6.4 FUTURE RKSKARCII

Experiments

The cost of using such a system for prog am construction is unclear at this time. The
prototype system was not implemented with efficiency as a consideration and thus executes
very slowly.«* It is believed by the author that even using an efficient implementation of the
PCM it will take more computer time to construct a program than with a normal text editor.
But he also believes that the benefits gained from having a syntactically correct program will
override the extra expense during this phase of program development. Tha author suggests,
given an efficient implementation of PCM, that a programmer performence and cost study
comparing the two methods of program development up to the pont of a successful
compilation would be extremely interesting. Trends in the economics of rrwhine time versus
human lime should probably be considered in the analysis of this study.

Technical Additions

Currently, the PCM only used data types for information presentation to the user. Tyoe
chacking could be added to the PCM by providing conversion tables, knowledge of the results
of operations, and the order of evaluation.

• It should also be extremely useful for programmers who are learning a new
programming language.

•• Also, the system was implemented in LISP and ran completely interpretively.

59

imm 1 ■ ■ - —

SUMMARY AND CONCLUSIONS

PCMREP is a sufficiently richly structured data base that it could be used by other
sophisticated facilities. In fact, it has been suscested by one member of USC's Information
Sciences Institute Program Verification Project that PCMPEP is a good possible replacement to
their current program-holding data base.

With the implementation of a language-dependent interpreter and debugger which operated on
PCMREP, the birth of a programming environment could be achieved. And since the program's
syntax is directly reflected in PCMREP and the formal description of the language is available,
the debugger could communicate with the programmer in the syntax of the particular
programming language.

David Wilczynski, in his recent dissertation on automatic debugging based on data access
[Wilczynski 75], has several heuristics for rewriting a program in an attempt to correct the
error. He claims this is possible because of his high-.evel Knowledge of the syntax of his
programming language and the relationship between this syntax and the associated control
flow. It would be interesting to see if his approach could be applied to some normal high-level
programming languages and then generalized usir,;; the PCM formalism and execution
information to perform LIBNI automatic debugging.

Just as the advent of high-level programming languages was a fundamental step forward in
computer science, it is now time for another step forward. A complete set of facilities must be
designed which really nid the programmer in his tasks if we are ever going tc proceed to the
next plateau of programming complexity. A true programming environment should be an ever-
expanding system which changes as the expertise in any area discussed above increases.
With such a system the complexity of the task domains will also increase, and that is the goal
of computer science.

60

^fftHmm^^fm^"' \.t mm^^mmmmimimmm > —■■ ■ ■ ' '— "" ■ " -»■ ..»-.ni-■'P-M- — - m HBRI •>•<• •••*,,

RKrKRKNCKS

Atwood, IW.j Holt, R.C.; Horning, J.J.; and Tsichritzis, D. Proposal for a Project Named SUE.
Computer Systems Research Group, University of Toronto, 1971.

Balzer, R.M. Language-1 nie pendent Programmer's Intviface. Uf.iversity of Southern California,
Information Sciences Institute. ISI/RR-73-15. 1974.

Bobrow, D.G. Requirements for /Idvanced Prottramming Systems for List Processing. Bolt
Beranek & Newman Report No. 2339, 1972.

Bratman, H; Martin, H.G.: and Perstein, E.C. "Program Composition and Editing With an On-line
Display." MIPS Conference Proceedings. Vol. XXXIII, Part 2. Montvale, New Jersey:
AFIPS Press, 1968, pp. 1349-1360.

Deutsch, LP. /In Interactive Program Verifier. Xerox Palo Alto Research Center, Report CSL-
73-1, 1973.

Engelbart, DC. /Idvanced Intellect-Augmentation Techniques. Stanford Research Institute, SRI
Project 7079, 1970.

Forsythe, A.I.; Keenan, T.A.j Organick, E.I.: and Stenberg, W. Computer Science: /) I'irst Coirse.
New York: John Wiley & Sons, 1969.

Gannon, ID, and Horning, J.J. "The Impact of Language Design on the Production of Reliable
Software." Proceedings of the International Conference on Reliable Software. 1975, pp
10-22.

Goldstein, I.P. "Pretty-Printing: Converting List to Linear Structure." Massachusetts Institute of
Technology, Artificial Intelligence Laboratory, Memo No. 279, 1973.

Understanding Simple Picture Programs. Massachusetts Institute of Technology,
Artificial Intelligence Laboratory. AI-TR-294. 1974.

Good, D.I.; London, R.L.; and Bledsoe, W.W. "An Interactive Program Verifi ation System."
Proceedings of the International Conference on lielinhle Software. 197r/, pp. 482-492.

Hansen, W.J. Creation of Hierarchic Text With a Computer Display. A, ^onne Nat'onal
Laboratory, Report No. ANL-7818, 1971.

61

^M^MrfHMMHMfe. * ate

tmmm^mi^ma^mf^m^^^^mmi^mmmm

HewiU, C; Bishop, P.; Greif, 1.; Smith, B.; Matson, T.; and Steiger, R. "Actor Induction and Meta-
evaluation." /JCM Conference on Principles of Programming Laneuaaes. Boston, Mass.,
1973, pp. 153-168.

Hopcroft, J.E. and Ullman, J.D. Fnnnnl Lnnnunges and Their Kelntion so /Ivtomnln. Reading,
Mass.: Addison-Wesley Publishing Company, 1969.

Irons, E.T. "An Error-Correcting Parse Algorithm." Communtail/oni of the /JCM. Vol. VI, No. 11
(November, 1963) pp. 669-673.

James, L.R. /I Syntax DirectX Krror Recovery Method. Computer Systems Researcri Group,
University of Toronto, Technical Report CSRG-13, 1972.

Jensen, K. and Wirth, N. Pnacol — User Manual and Report. Lecture Notes in Computer
Science. Vol. XVIII. Edited by G. Goo., and J. Hartmanis. Berlin: Springer-Verlag, 197^».

Johns, C.B. The Generation of Error Recoterin/r Simple Precedence Parsers. Computer Science
Technical Reoort No. 74/10. McMasters University, 1974.

Kay, A.C. "The Reactive Engine." Unpublished Ph.D. dissertation. University of Utah, 1969.

King, J.C. "A New Approach to Program Testing." Proceedings of the International Confornnra
on Reliable Softumre. 1975, pp. 228-233.

LaFrance, J.E. Syntax-Directed Krror Recovery for Compilers. Department of Computer Science,
University of Illinois, Report No. 459. 1971.

Lang, D.E. STYLK Kditor: User's Guide. Deportment of Computer Science, University of
Colorado, 1972.

Lasker, D.M. An Investiaation of a New Method of Constructing Software. Computer Systems
Research Group, University of Toronto, Technical Report CSRG-38, 1974.

Leinius, R.P. "Error Detection and Recovery for Syntax Directed Compiler Systems."
Unpublished Ph.D. dissertation. University of Wisconsin, 1970.

Levy, J. Automatic Correction of Syntax Errors in Programming l.angu.ices. Department of
Computer Science, Cornell University, TR-71-116, 1971.

Mitchell, J.G. "The Design and Construction of Flexile and Efficient Interactive Programming
Systems." Unpublished Ph.D. dissertation, Carnegie-Mellon University, 1970.

Morton, K.W. "What the Software Engineer Can Dc for the Computer User." Advanced Course
on Software Engineering. Edited by F.L. Bauer. Lecture Notes in Economics and
Mathematical Systems, Vol. LXXXI. Berlin: Springer-Verlag, 1973.

62

imt-m» urn — ■-' ""■ 1 I ■ '"I" '" —,—~~
m*****

Peterson, T.G. "Syntax Error Detection, Correction and Recovery in Pdrserc." Unpublished Ph.D.
dissertation, Stevens Institute of Technology, 1972.

Sussman, IS. /I Comimtntionnl Model of Skill /Irqvisinou. Massachusetts Institute of
Technology, Artificial Intelligence Laboratory. AI-TR-297. 1973.

Suzuki, N. "Verifying Programs by Algebraic and Logical Reduction." Prorrrdings of the
International Conference on Relinhle Software. 1975, pp. 473-481.

Swinehart, D.C. COPILOT: /I Multiple Process Approach to Internclive Pronrnmming Systems.
Stanford Artificial Intelligence Laboratory. Memo AIM-230, 1974.

Teitelman, W. "Toward a Programming Laboratory." Internntionnl Joint Conference on
Artificial Intelligence. Edited by D. Walker. 1969.

 INTEKLISP Hefcrrnce Manual. Xerox Palo Alto Research Center, 1974.

von Henke, F.W., and Luckham, D.C. "A Methodology for Verify Programs." Proceedings of the
Internationa,. Conference on Keliahle Software. 1975, pp. 156-164.

Wegbreit, B. "Tie ECL Programming Systems." AFIPS Conferenc Proceedings. Vol. XXXVIIII.
Montvale, New Jersey: AFIPS Press, 1971, pp. 253-262.

Multiple Kvaluators in an Exiensihle Programming System. Center for
Research in Computing Technology, Harvard University, ESD-TR-73-112, 1973

Wilczynski, D. "A Process Elaboration Formalism For Writing and Analyzing Programs."
Unpublished Ph.D. dissertation. University of Southern California, 1975. Published as
ISI/RR-75-35, October 1975.

Winograd, T. "Breaking the Complexity Barrier Ofain." SICPI./IN Notices. Vol. X, No 1
(January, 1975) pp. 13-22.

Youngs, E.A. "Human Errors in Programming." International Journal of Man-Machine Studies.
Vol. VI, No. 6 (May, 1974) pp. 361-376.

63

mi am H^BMrftMri^^MMMtfMÜl -■■-■■ ■ ~ - ■ -■

